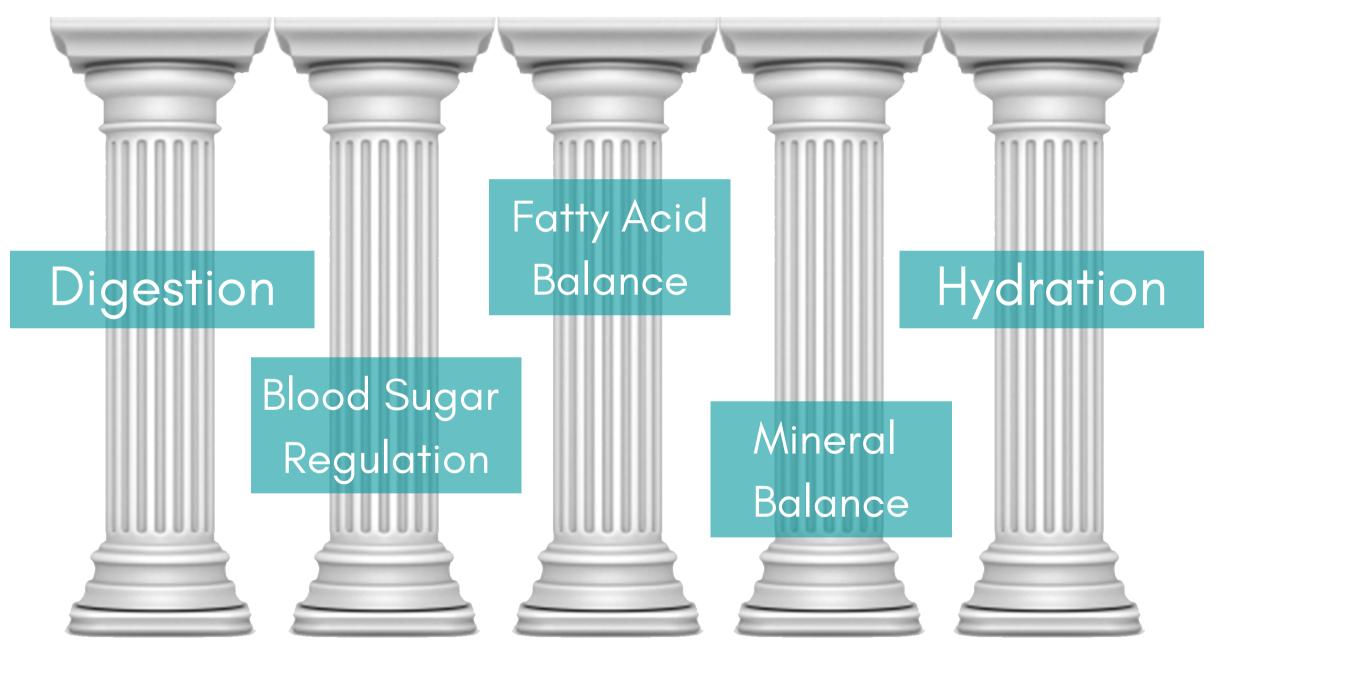
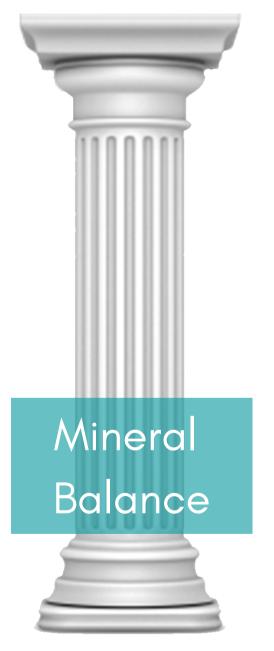

The Missing Link: Balancing Tiny Explosions

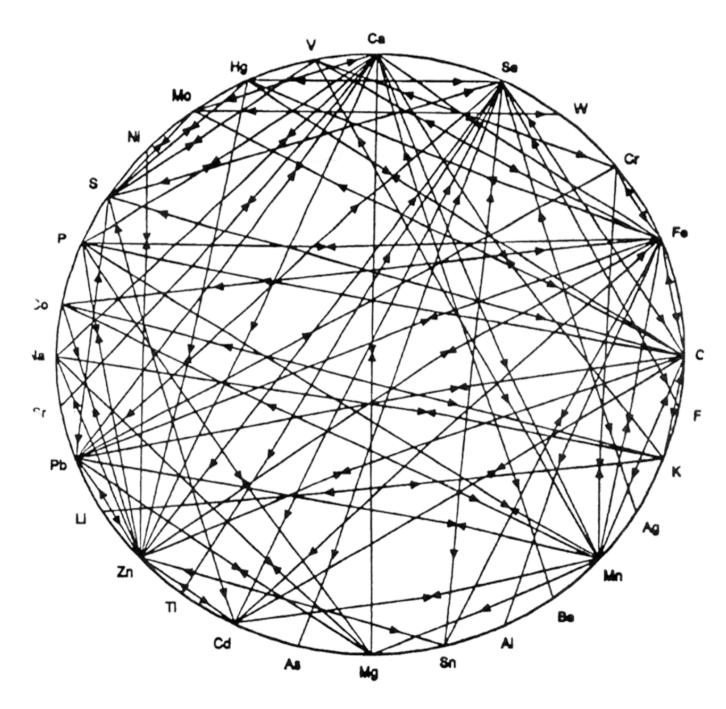
Who is she? Nina-Marie Rueda, ND


- wife
- mother
- naturopath
- functional nutritionist
- labor doula
- postpartum doula
- lactation educator
- former postpartum private chef
- educator

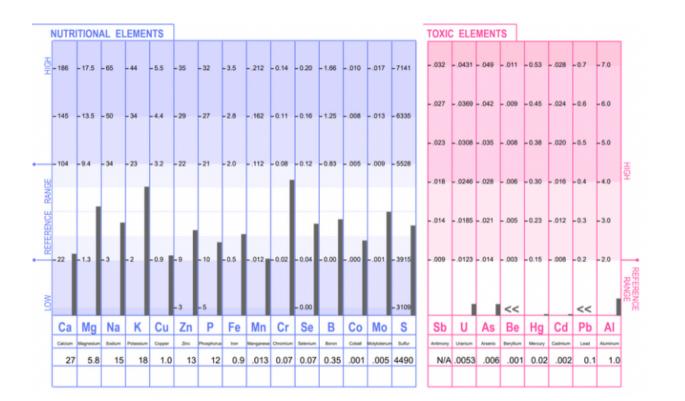
What will we cover?

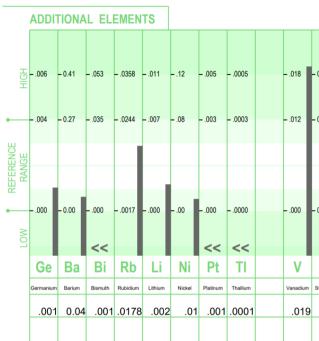

- Know what the roles of various minerals are in health
 - with special emphasis on Ca, Mg, Na, K
- Case studies:
 - fertility/blood pressure
 - eczema
 - PANDAS
 - Autism
 - pregnancy

Pillars to Health


What are minerals, anyway?

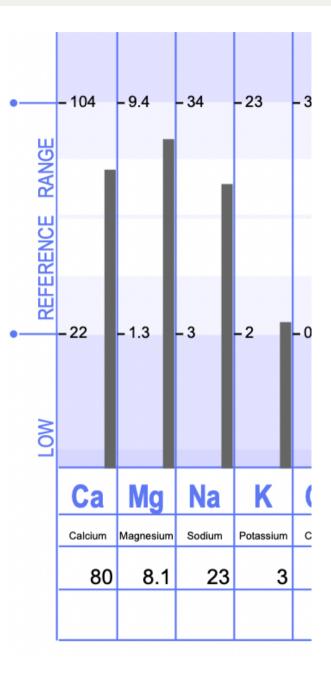
- spark plugs to reactions in the body
- they are needed
 - to make hormones
 - eliminate toxins (detoxification)
 - make digestive juices
 - contract/relax muscles/tissues
 - create energy
 - produce neurotransmitters
 - and much more




What creates mineral imbalances?

- depleted soil
- medications
 - includes supplementation
- stress
 - birth/childhood
 - teens/college
 - adult years
 - pregnancy
 - breastfeeding
 - surgery/injury/illness
 - poor sleep

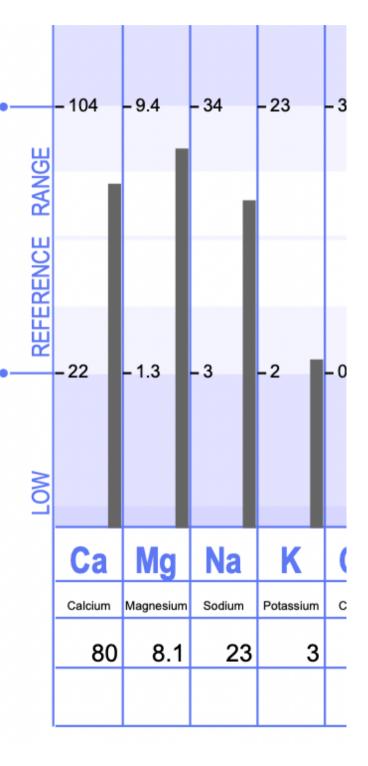
How are minerals measured?



Hair Tissue Mineral Analysis:

- atomic absorption spectroscopy over 75yrs ago
- standard method of environmental mineral testing worldwide
- human HTMA became widely available in the 70s
- Drs. Paul Eck and David Watts are pioneers in this research and went on to found **ARL and TEI labs**
 - discovered the distinct nutrient patterns on HTMA

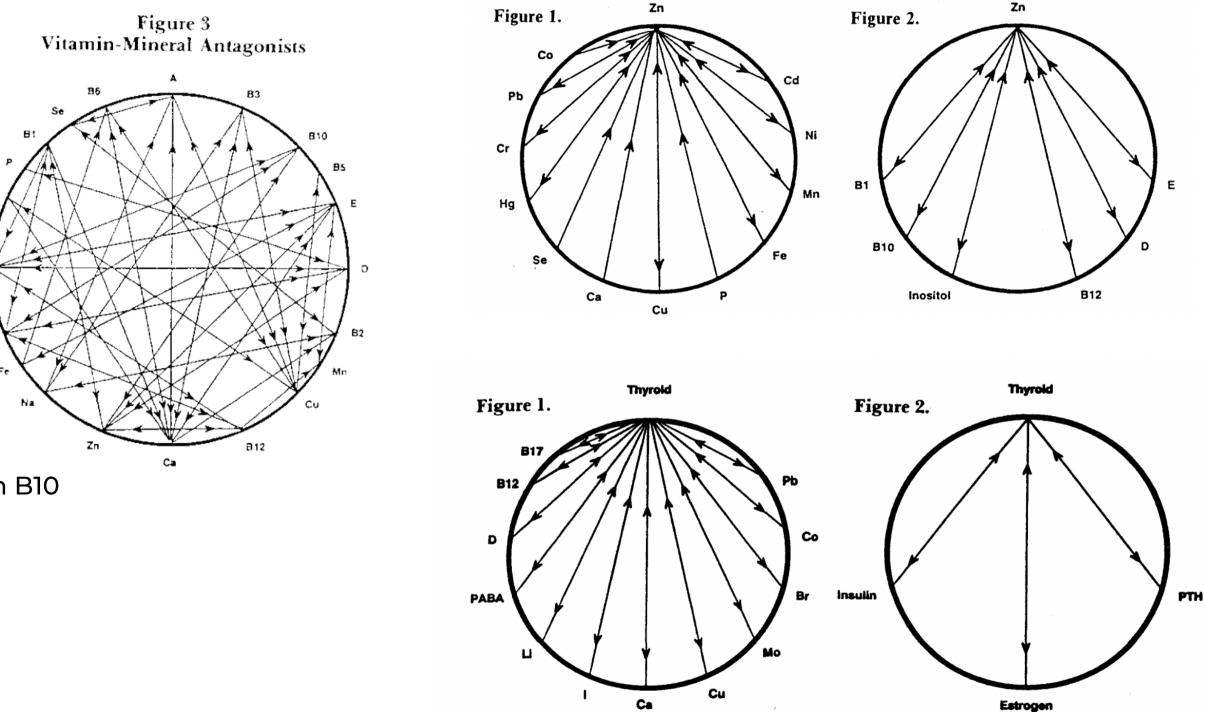
0.87	- 0.11	36	005	- 0.09	
0.58	- 0.07	24	003	- 0.06	
0.00	- 0.00	00	000	- 0.00	
Sr	Sn	Ti	W	Zr	
Strontium	Tin	Titanium	Tungsten	Zirconium	
0.14	0.05	.24	.001	0.09	

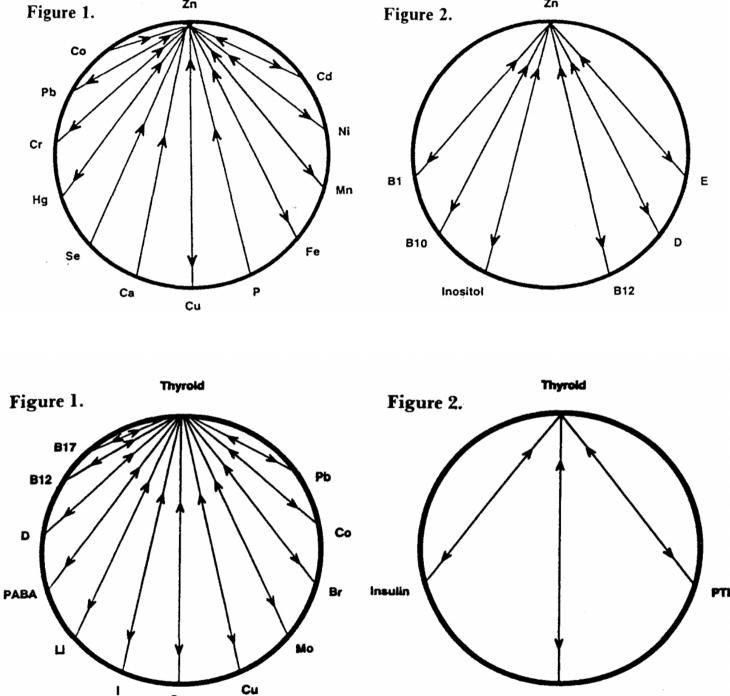

How are minerals measured?

But what about blood chemistry??

- Blood is homeostatic and will deposit elements into tissues to remain in balance.
- Blood shows acute snapshots.
- Using both will give a comprehensive picture.

Important Principle:


- Antagonism and Synergism of Elements:
 - Minerals and minerals
 - Minerals and vitamins
 - Minerals and hormones
 - Minerals and metals (antagonistic only)
- Antagonistic Examples:
 - Cadmium: Ca, Fe, Mn
 - Calcium: Pb, Zn, Mg, Fe, P,


Mn, Na, K, Cd

• Thyroid hormone: Ca, Cu, Br,

Pb, Co

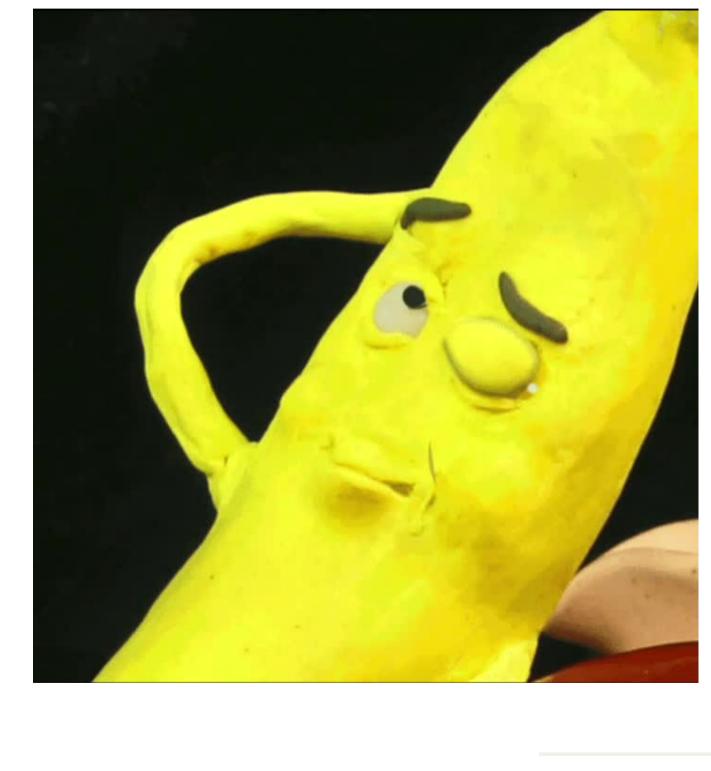
- Chromium: Vitamin B12, Vitamin D, Vitamin B10
- Synergistic Examples:
- Magnesium: Ca, K, Zn, Mn, P, Cr
- Magnesium: Vitamin A, B1, B2, B3, C, E
- Estrogen: Copper
- Testosterone/Progesterone: Zinc

Calcium

- primary structural element
- over 95% is in the bone and teeth
 - when it is displaced into the tissues, it dysregulates that tissue's/organ's functions
- inhibits thyroid hormone
 - can block iodine receptors and negatively impact your thyroid
- insulin release is dependent on calcium's availability
- controls the nervous system
- responsible for muscle contractions
- maintain the pH of the body
- reduces lactic acid build up

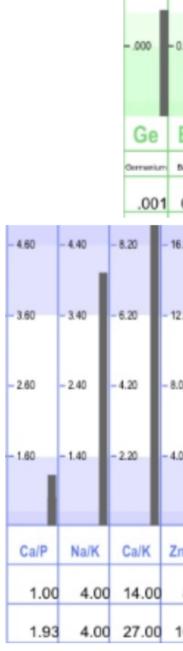
Magnesium

- intracellular mineral
- key element in cellular metabolism
- needed for the creation of ATP (energy)
- needed for over 3,000 enzyme reactions
- regulates sugar metabolism
- highest concentration in muscles, liver, heart, pancreas
- needed for cell membrane permeability
- relaxes muscles
- reduces inflammation
- known as the heart mineral


Sodium

- primary alkalizer
- regulated by the adrenal glands secretion of aldosterone
- regulates blood pressure
- regulates increased heart rate
- maintains fluid balance
- maintains pH levels
- influences hydrochloric acid levels (stomach acid)
- influences cell membrane permeability
 - sodium-potassium pump

Potassium


- regulates blood pressure (with sodium)
- maintained fluid pH & pH level of the body
- influences cell membrane permeability sodium-potassium pump
- sensitizes the cell to thyroid hormone
- involved in managements of hormones
 - assists in steroid production/transport in the placenta
- nerve conduction of the heart
- lowers heart rate
- dilates arteries

- 145	- 13.5	- 50	- 34	-4.4	- 29	-27	- 2.8	162	- 0.11	-0.16	- 1.25	008	013	- 6335	027	0369	042	009	-0.45	024	-0.6	-6.0		
															023	0308	035	008	-0.38	020	-0.5	- 5.0		
- 104	-9.4	- 34	- 23	-3.2	- 22	-21	-2.0	112	- 0.08	-0.12	- 0.83	005	009	- 5528	.018	0246	028	006	-0.30	016	-0.4	-4.0		
												_			014	0185	021	005	-0.23	012	-0.3	- 3.0		
-22	-1.3	-3	-2	-0.9	-9	- 10	-0.5	012	- 0.02	- 0.04	- 0.00	000	001	- 3915	009	0123	014	003	-0.15	008	-0.2	-2.0		
					-3	-5				-0.00				- 3109				<<		<<	<<			
Ca	Mg	Na	κ	Cu	Zn	Ρ	Fe	Mn	Cr	Se	В	Co	Мо	S	Sb	U	As	Be	Hg	Cd	Pb	AI		
Calcium	Magnesium	Solum	Polassium	Copper	Zni	Phosphorus	Iron	Vanjareso	Cheomium	Selerium	Boron	Coball	Malybdeau	Sular	Antimony	Uranium	Assenic	Beryllure	Mercury	Catrius	Load	Akaraimam	- 4.60	- 4.40
14	11.1	4	1	1.8	16	14	0.8	.014	0.05	0.06	0.14	.006	.005	4504	N/A	.0016	.004	.001	0.09	.001	0.1	0.5		
27	23.8	4	1	1.6	17	14	0.4	.012	0.03	0.07	0.02	.010	.003	4912	N/A	.0013	.003	.001	0.06	.001	0.1	0.4	3.60	- 3.40

• Fatigue, digestive issues, returning hair loss, extremely painful period cramps, consistent mild dizziness/low blood pressure. She is working on getting her body in a better place before trying to get pregnant.

0.41	053 -	.0358 -	011	12	005	0005	01	8 - 0.87	-0.11 -	.3600	- 0.09		
0.27	035 -	.0244	.007	08	003	0003	01	2 - 0.58	-0.07	.2400	13 - 0.06		
	1										T.	L -	
	÷									1	ł.		
0.00	- 000 -	.0017	.000	00	000	0000	00	0.00 - 0.00	-0.00	.0000	0.00 - 0.00	L .	
- 1	- 1	-1	- 1		<<				<<	- 1-			
Ba	Bi	Rb	Li	Ni	Pt	TI	1	/ Sr	Sn	Ti V	N Zr		
Barium	Banufi /	Nubidium	Litrium	Nickel	Patrum	Thalium	Vana	dun Storfun	т.	Tilanium Tun	gslen Ziroonia	an l	
0.01	.028	0012	.001	.0	1 .001	.0001	.0	0.03	3 0.01	.09 .0	004 0.0	8	
16.00	- 8.00	- 15.00	- 2.30	-	168.0	- 8.8	- 20.0	- 1.6	- 1000.0	- 400.0	- 56900	- 142251	- 11380
						1							
12.00	- 6.00	- 11.00	- 1.60	-	126.0	-6.6	- 15.0	-12	- 750.0	- 300.0	- 42675	- 106688	- 8535
					- 1								
	- 4.00	-7.00	- 0.90		84.0	44	- 10.0	-0.8	- 500.0	- 200.0	- 28450	- 71126	- 5690
					_								
4.00	- 2.00	- 3.00	-0.20		42.0	-22	- 5.0	-0.4	- 250.0	- 100.0	- 14225	- 35563	- 2845
	2.00	3.00	- 0.20	н	_								
-1													
Zn/Cu	Na/Mg	Ca/M	g Fe/	Cu	Ca/Pb	Fe/Pb	Fe/Hg	Se/Hg	Zn/Cd	Zn/Hg	S/Hg	S/Cd	S/Pb
8.89	0.36	1.2	26 0	.44	140.0	8.0	8.9	0.7	16000.0	177.8	50044	4504000	45040
10.63	0.17	1.1	13 0	.25	270.0	4.0	6.7	1.2	17000.0	283.3	81867	4912000	49120
										_			

- Three Lows Ca/Na/K
 - overwhelming stress (stress response is beginning to malfunction)
 - blood pressure becomes dysregulated

> Biochim Biophys Acta Mol Cell Res. 2018 Nov;1865(11 Pt B):1815-1829. Review doi: 10.1016/j.bbamcr.2018.08.005. Epub 2018 Aug 9.

Establishing life is a calcium-dependent TRiP: Transient receptor potential channels in reproduction

Katrien De Clercq¹, Joris Vriens²

Affiliations + expand

PMID: 30798946 DOI: 10.1016/j.bbamcr.2018.08.005 Free article

- 145	- 13.5	- 50	- 34	-4.4
- 104	- 9,4	- 34	-23	-3.2
-22	- 1.3	-3	-2	-0.9
Са	Mg	Na	к	Cu
Calcium	Magneskum	Solium	Polassium	Copper
14	11.1	4	1	1.
27	23.8	4	1	1.0

- Ca low: dysregulated BP (usually high),
 - hyperthyroidism, anxiety, Type I insomnia, etc.
 - Fertility: germ cell maturation, placental

 - development, regulates sperm movement/shape, needed for fertilization

											027	0369	042	009	-0.45	024	-0.6	-6.0
	-29	- 27	-2.8	162	-0.11	-0.16	- 1.25	008	013	-6335								
											023	0308	035	008	-0.38	020	-0.5	- 5.0
	-22	-21	-2.0	112	-0.08	-0.12	- 0.83	005	009	- 5528	018	0246	028	006	-0.30	016	-0.4	-4.0
											014	0185	- 021	005	-0.23	012	-0.3	-3.0
I	-1																	
ł	.9	- 10	-0.5	012	- 0.02	- 0.04	- 0.00	000	001	- 3915	009	0123	014	003	-0.15	800	-0.2	-2.0
l	-3	-5				- 0.00				- 3109				<<		<<	<<	
ı	Zn	Ρ	Fe	Mn	Cr	Se	В	Co	Мо	S	Sb	U	As	Be	Hg	Cd	Pb	AI
er	Zm	Phosphonas	Iron	Vanjareso	Cheomiam	Selerium	Boron	Cobell	Malybdenan	Sullar	Antimony	Unanium	Arsenic	Beryllum	Mercury	Cadmium	Load	Akaraimam
.8	16	14	0.8	.014	0.05	0.06	0.14	.006	.005	4504	N/A	.0016	.004	.001	0.09	.001	0.1	0.5
.6	17	14	0.4	.012	0.03	0.07	0.02	.010	.003	4912	N/A	.0013	.003	.001	0.06	.001	0.1	0.4

- Na low: can lead to low BP, dizziness, fatigue, low HCl, depression, bloating, weakness, poor protein digestion, etc.
 - Fertility: supports BP, decreasing poor prenatal outcomes, decreases risk of endo and PCOS
 - NOTE: blood chem showed low Na as well

> BMC Pregnancy Childbirth. 2020 Jan 8;20(1):25. doi: 10.1186/s12884-019-2699-3.

Pre-conception blood pressure and evidence of placental malperfusion

Jacqueline Atlass¹, Marie Menke¹, W Tony Parks¹²³⁴, Janet M Catov⁵⁶⁷

Affiliations + expand

PMID: 31914950 PMCID: PMC6950980 DOI: 10.1186/s12884-019-2699-3

Free PMC article

- 145	- 13.5	- 50	- 34	-4.4	-29	-27	-2.8	162	-0.11	- 0.16	- 1.25	008	013	- 6335	027	0369	042	009	-0.45	024	-0.6	-6.0
															023	0308	035	008	-0.38	020	-0.5	-5.0
- 104	-9,4	- 34	-23	-3.2	-22	-21	-2.0	112	-0.08	-0.12	-0.83	005	009	- 5528	018	0246	028	006	- 0.30	016	-0.4	-4.0
												_			014	0185	021	005	-0.23	012	-0.3	-3.0
- 22	- 1.3	-3	-2	-0.9	-9	- 10	-0.5	012	-0.02	- 0.04	- 0.00	000	001	- 3915	009	0123	014	003	-0.15	008	-0.2	-2.0
			_		-3	-5				-0.00				- 3109				<<		<<	<<	
Ca	Mg	Na	К	Cu	Zn	Р	Fe	Mn	Cr	Se	В	Co	Мо	S	Sb	U	As	Be	Hg	Cd	Pb	AI
Calcium	Magneskum	Solum	Polassium	Copper	Zni	Phosphonus	tron	Mangareso	Chromium	Selerium	Boron	Coball	Malybdenar	Sullar	Antimony	Unanium	Assenic	Boyllus	Mercury	Cathium	Load	Akarainam
14	11.1	4	1	1.8	16	14	0.8	.014	0.05	0.06	0.14	.006	.005	4504	N/A	.0016	.004	.001	0.09	.001	0.1	0.5
27	23.8	4	1	1.6	17	14	0.4	.012	0.03	0.07	0.02	.010	.003	4912	N/A	.0013	.003	.001	0.06	.001	0.1	0.4

- heartbeats, low BP (or high), water retention, etc.
 - Fertility: regulates BP, decreases risk of stroke, CVD,
 - **Insulin Resistance**

© Nina-Marie Rueda, ND | www.doctorninamarie.com | IG: edoctorninamarie

• K - low: allergies, constipation, fatigue, irregular

- Mg high: low BP, confusion, depression, diarrhea, fatigue, lethargy, etc.
 - Fertility: regulates BP, supports inflammatory response, moves waste for detox, supports menses (eliminating PMS; key in endo)


Biol Trace Elem Res. 2021; 199(10): 3647–3657. Published online 2020 Dec 14. doi: 10.1007/s12011-020-02513-0

PMCID: PMC8360883 | PMID: 33319331

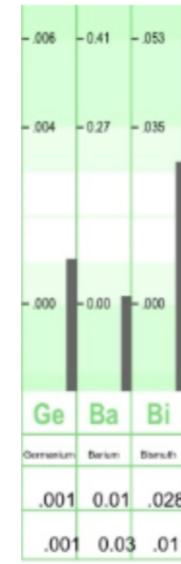
The Role of Magnesium in Pregnancy and in Fetal Programming of Adult Diseases

Daniela Fanni,^{I1,2} C. Gerosa,^{1,2} V. M. Nurchi,³ M. Manchia,⁴ L. Saba,⁵ F. Coghe,⁶ G. Crisponi,³ Y. Gibo,⁷ P. Van Eyken,⁸ V. Fanos,⁹ and G. Faa^{1,2,10}

Author information > Article notes > Copyright and License information PMC Disclaimer

- - eclampsia."

© Nina-Marie Rueda, ND | www.doctorninamarie.com | IG: @doctorninamarie



											027	0369	042	009	-0.45	024	-0.6	-6.0
	-29	- 27	-2.8	162	-0.11	- 0.16	- 1.25	800	013	- 6335								
	- 22	- 24	20	142	0.09	-0.12	0.02	. 025	000	6639	023	0308	035	008	-0.38	020	-0.5	- 5.0
	- 22	- 21	-20	112	- 0.00	-0.12	-0.03	005	003	- 3320	018	0246	028	006	- 0.30	016	-0.4	-4.0
I											014	0185	021	005	-0.23	012	-0.3	-3.0
	-9	- 10	-0.5	012	- 0.02	- 0.04	- 0.00	000	001	- 3915	009	0123	014	003	-0.15	800	-0.2	-2.0
	-3	-5				- 0.00				- 3109				<<		<<	<<	
1	Zn	Ρ	Fe	Mn	Cr	Se	В	Co	Мо	S	Sb	U	As	Be	Hg	Cd	Pb	AI
er	Zec	Phosphonas	Iron	Mangarese	Cheomium	Selerium	Boron	Cobell	Malybdenan	Sullar	Antimony	Unanium	Arsenic	Beryllure	Mercury	Cadmium	Load	Akarainam
.8	16	14	0.8	.014	0.05	0.06	0.14	.006	.005	4504	N/A	.0016	.004	.001	0.09	.001	0.1	0.5
.6	17	14	0.4	.012	0.03	0.07	0.02	.010	.003	4912	N/A	.0013	.003	.001	0.06	.001	0.1	0.4

• "It has been claimed that magnesium supplementation of pregnant women might reduce the risk of IUGR of the fetus, increase birthweight, and reduce by half the incidence of

- Metals:
 - Uranium
 - Arsenic
 - Mercury
 - Aluminum
 - Bismuth
 - Tungsten
 - Zirconium

027	03	69 -	.042	009	-0.45	024	-0.6	-6.0
023	03	08 -	.035	008	-0.38	020	-0.5	-5.0
018	02	46 -	.028	006	-0.30	016	-0.4	-4.0
014	01	85 -	.021	005	-0.23	012	-0.3	- 3.0
009	01	23 -	.014	003	-0.15	008	-0.2	-2.0
				<<		<<	<<	
Sb) U		As	Be	Hg	Cd	Pb	AI
Artino	ny Unan	k.en	Arsenic	Beryllum	Mercury	Cadmium	Lead	Aluminum
N/	A .00	16	.004	.001	0.09	.001	0.1	0.5
N/	A .00	13	.003	.001	0.06	.001	0.1	0.4

	0358 -	011	12	005	0005	018	- 0.87	-0.11	36	005	- 0.09
	0244 -	- ,007	08	003	0003	012	-0.58	-0.07	24	003	- 0.06
	0017	000	00	000	0000	000	- 0.00	-0.00	00	000	- 0.00
	Rb	Li	Ni	Pt	TI	۷	Sr	Sn	Ti	W	Zr
h	Rubidium	Lithium	Nickel	Patrum	Thalium	Vanadum	Storfue	τ.	Tenkro	Tungslen	Zeconium
28	.0012	.001	.01	.001	.0001	.003	0.03	0.01	.09	.004	0.08
11	.0010	.001	.01	.001	.0001	.002	0.06	0.01	.10	.001	0.02

- Common sources of exposure:
 - Uranium:
 - geographic locations with granite deposits (Colorado, Nevada, etc.) (food grown in soil)
 - Phosphate fertilizer
 - Nuclear plant run-off's (water)
 - Water
 - Arsenic:
 - rice
 - chicken (feed)
 - treated wood
 - water supply
 - Mercury:
 - water
 - fish
 - amalgam fillings
 - HFCS

© Nina-Marie Rueda, ND | www.doctorninamarie.com | IG: edoctorninamarie

- Aluminum:
 - tap water
 - antiperspirants
 - tale salt
 - antacids
 - bread
 - canned foods
 - aluminum cookware/foil/containers
- Bismuth:
 - tap water/well water
 - seaweed
 - paint
 - soybeans
 - insecticide

• Tungsten:

- some water sources
- paint
- waterproof markers
- dyes & ceramics
- jewelry
- Zirconium:

- ceramics & glass
- deodorants
- skin ointments
- nuclear power (run-offs)
- artificial gem stones
- poison ivy treatment

- Mercury -
 - menstrual disorders, sterility, spontaneous abortion
 - progesterone decreases; LH is inhibited
 - amount of mature oocytes & follicles decrease
 - <u>Selenium, Iodine, Zinc, Chromium, Manganese oppose Mercury.</u>

 Review
 > Basic Clin Pharmacol Toxicol. 2019 Oct;125(4):317-327. doi: 10.1111/bcpt.13264.

 Epub 2019 Aug 8.

Mercury exposure and its effects on fertility and pregnancy outcome

Geir Bjørklund ¹, Salvatore Chirumbolo ² ³, Maryam Dadar ⁴, Lyudmila Pivina ⁵ ⁶, Ulf Lindh ⁷, Monica Butnariu ⁸ ⁹, Jan Aaseth ¹⁰ ¹¹

Affiliations + expand PMID: 31136080 DOI: 10.1111/bcpt.13264 Free article > J Reprod Infertil. 2019 Jul-Sep;20(3):195-197.

Exposure to Environmental Organic Mercury and Impairments in Human Fertility

Geir Bjørklund¹, Jan Aaseth², Maryam Dadar⁴, Monica Butnariu⁵, Salvatore Chirumbolo⁷

Affiliations + expand PMID: 31423423 PMCID: PMC6670267 Free PMC article

027	0369	042	009	-0.45	024	-0.6	-6.0
023	0308	035	008	-0.38	020	-0.5	-5.0
018	0246	028	006	-0.30	016	-0.4	-4.0
				-0.23		-0.2	
Sb	U	As	Be	Hg		Pb	AI
Antenny	Uranken	Assenic	Beryllun	Mercury	Catrius	Lead	Aluminum
N/A	.0016	.004	.001	0.09	.001	0.1	0.5
N/A	.0013	.003	.001	0.06	.001	0.1	0.4

- Tungsten -
 - Tungsten oxide was used for permanent male sterilization in animals
 - low stored Vitamin D was associated with detection of Tungsten in comparison to controls
 - Tungsten has a direct correlation with Chronic Kidney Disease (a direct effect on blood pressure), blood sugar regulation, and detox.
 - Molybdenum opposes Tungsten.

> Environ Res. 2021 Aug:199:111351. doi: 10.1016/j.envres.2021.111351. Epub 2021 May 19.

A prospective study of maternal 25-hydroxyvitamin D (250HD) in the first trimester of pregnancy and second trimester heavy metal levels

Anne Marie Z Jukic ¹, Stephani S Kim ², John D Meeker ³, Scott T Weiss ⁴, David E Cantonwine ⁵, Thomas F McElrath ⁵, Kelly K Ferguson ²

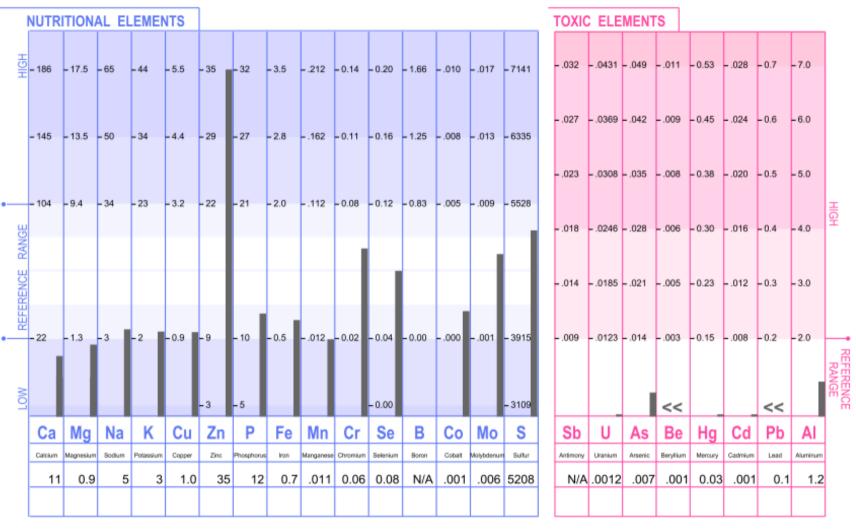
Affiliations + expand PMID: 34022229 PMCID: PMC8308798 DOI: 10.1016/j.envres.2021.111351 Free PMC article > Environ Res. 2021 Apr:195:110710. doi: 10.1016/j.envres.2021.110710. Epub 2021 Jan 15.

Urine tungst Colorado

Jacob Fox ¹, Francesca Macaluso ², Camille Moore ³, Elise Mesenbring ⁴, Richard J Johnson ⁵, Richard F Hamman ⁶, Katherine A James ⁷

Affiliations + expand PMID: 33460634 PMC Free PMC article

.006	-0.41	053	0358	011	12	005	0005	018	- 0.87	-0.11	36	005	- 0.09
.004	-0.27	035	0244	007	08	003	0003	012	-0.58	-0.07	24	003	- 0.06
.000	- 0.00	000	0017	000	00	000	0000	000	-0.00	-0.00	00	000	- 0.00
Ge	Ba	Bi	Rb	Li	Ni	Pt	ΤΙ	v	Sr		ті	w	Zr
kernanium	Barium	Banuth	Rubidium	Littium	Nickel	Pairum	Thalium	Vanadum	Storture	τ.	Terkm	Tungslen	Zeconium
.001	0.01	.028	.0012	.001	.01	.001	.0001	.003	0.03	0.01	.09	.004	0.08
.001	0.03	.011	.0010	.001	.01	.001	.0001	.002	0.06	0.01	.10	.001	0.02


Urine tungsten and chronic kidney disease in rural

PMID: 33460634 PMCID: PMC7987874 DOI: 10.1016/j.envres.2021.110710

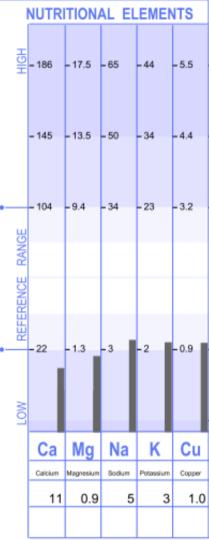
Note: Next is an eczema case with a photo of a bloody flare.

steroid cream to help.

© Nina-Marie Rueda, ND | www.doctorninamarie.com | IG: edoctorninamarie

• Mom's (obvious) concern is her son's eczema rash. Nothing parents have done is helping it. Parents are now using a

- Four Lows pattern stress response has malfunctioned; poor absorption
 - Most minerals are low
- Zinc high:
 - infection, high cholesterol, anemia (antagonized Cu)
- First study: "Low zinc and copper levels are commonly found in pediatric skin diseases and their significance needs to be determined."
- Some heavy metals
 - 2nd study notes arsenic and mercury as potential culprits
- Other testing showed: fungal overgrowth, severe microbial dysbiosis, low serum Zn and Cu


> Pediatr Allergy Immunol. 2010 Aug;21(5):831-6. doi: 10.1111/j.1399-3038.2010.01022.x. Epub 2010 Mar 19.

Serum levels of heavy metals in childhood eczema and skin diseases: friends or foes

Kam-Lun E Hon¹, Shuxin Susan Wang, Emily C W Hung, Hugh S Lam, Heike H K Lui, Chung-Mo Chow, Gary K W Ching, Tai-Fai Fok, Pak-Cheung Ng, Ting-Fan Leung

Affiliations + expand PMID: 20337961 DOI: 10.1111/j.1399-3038.2010.01022.x

© Nina-Marie Rueda, ND | www.doctorninamarie.com | IG: edoctorninamarie

Fish consumption, fish atopy and related heavy metals in childhood eczema

Kam Lun Hon¹, Heike Lui, Shuxin Susan Wang, Hugh Simon Lam, Ting Fan Leung

Affiliations + expand

PMID: 22947908 Free article

											-	тохіс	ELE	MENT	S				
	- 35	- 32	- 3.5	212	- 0.14	- 0.20	- 1.66	010	017	- 7141		032	0431	049	011	- 0.53	028	- 0.7	- 7.0
	- 29	- 27	- 2.8	162	- 0.11	- 0.16	- 1.25	008	013	- 6335		027	0369	042	009	- 0.45	024	- 0.6	- 6.0
	- 22	-21	- 2.0	112	- 0.08	- 0.12	- 0.83	005	009	- 5528		023	0308	035	008	- 0.38	020	- 0.5	- 5.0
												018	0246	028	006	- 0.30	016	- 0.4	- 4.0
												014	0185	021	005	- 0.23	012	- 0.3	- 3.0
	-9	- 10	- 0.5	012	- 0.02	- 0.04	- 0.00	000	001	- 3915		009	0123	014	003	- 0.15	008	- 0.2	- 2.0
	- 3	- 5				- 0.00				- 3109					<<			<<	
	Zn	Р	Fe	Mn	Cr	Se	В	Со	Мо	S		Sb	U	As	Be	Hg	Cd	Pb	AI
,	Zino	Phosphorus	kon	Manganese	Chromium	Selenium	Boron	Cobalt	Molybdenum	Sulfur		Antimory	Uranium	Arsenic	Beryllium	Mercury	Gadmium	Lead	Aluminum
0	35	12	0.7	.011	0.06	0.08	N/A	.001	.006	5208		N/A	.0012	.007	.001	0.03	.001	0.1	1.2

> Iran J Allergy Asthma Immunol. 2012 Sep;11(3):230-5.

- First study notes the importance of zinc status in skin conditions
- Second study notes various micronutrients for consideration with atopic dermatitis:
 - $\circ~$ Zinc, Vitamin D, and Selenium
- Protocol: mineral balancing with Zn, Vitamin C, omega-3s, digestive enzymes, probiotics, and then moving into an eradication protocol for fungal overgrowth and dysbiosis

Review > Nutrients. 2018 Feb 16;10(2):219. doi: 10.3390/nu10020219.

The Role of the Slc39a Family of Zinc Transporters in Zinc Homeostasis in Skin

Bum-Ho Bin¹, Shintaro Hojyo², Juyeon Seo³, Takafumi Hara⁴, Teruhisa Takagishi⁵, Kenji Mishima⁶, Toshiyuki Fukada⁷⁸⁹

Affiliations + expand PMID: 29462920 PMCID: PMC5852795 DOI: 10.3390/nu10020219 Free PMC article

> J Altern Complemen Epub 2019 Mar 26.

Micronutrie Review

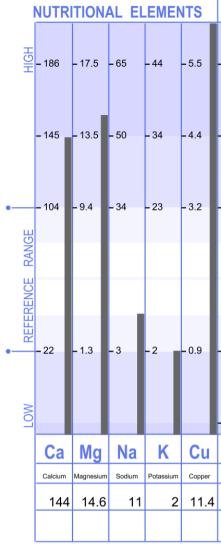
Alexandra R Vaughn¹, Negar Foolad², Melody Maarouf³, Khiem A Tran³, Vivian Y Shi⁴

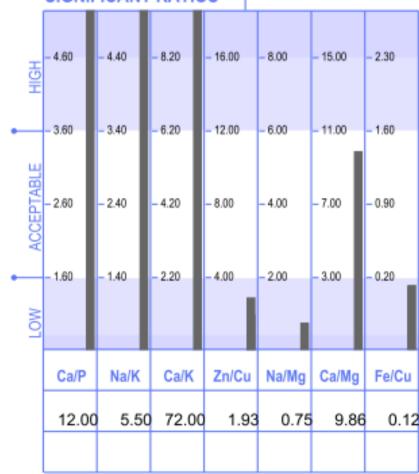
Affiliations + expand PMID: 30912673 DOI: 10.1089/acm.2018.0363

											-	гохіс	ELE	MENT	S				
	- 35	- 32	- 3.5	212	- 0.14	- 0.20	- 1.66	010	017	- 7141		032	0431	049	011	- 0.53	028	- 0.7	- 7.0
	- 29	- 27	- 2.8	162	- 0.11	- 0.16	- 1.25	008	013	- 6335		027	0369	042	009	- 0.45	024	- 0.6	- 6.0
	- 22	- 21	- 2.0	112	- 0.08	- 0.12	- 0.83	005	009	- 5528		023	0308	035	008	- 0.38	020	- 0.5	- 5.0
												018	0246	028	006	- 0.30	016	- 0.4	- 4.0
												014	0185	021	005	- 0.23	012	-0.3	- 3.0
	-9	- 10	- 0.5	012	- 0.02	- 0.04	- 0.00	000	001	- 3915		009	0123	014	003	- 0.15	008	- 0.2	- 2.0
	-3	-5				- 0.00				- 3109					<<			<<	
	Zn	Ρ	Fe	Mn	Cr	Se	В	Со	Мо	S		Sb	U	As	Be	Hg	Cd	Pb	AI
,	Zino	Phosphorus	iran	Manganese	Chromium	Selenium	Boron	Cobalt	Malybdenum	Sulfur		Antimony	Uranium	Arsenic	Beryllium	Mercury	Gadmium	Lead	Aluminum
D	35	12	0.7	.011	0.06	0.08	N/A	.001	.006	5208		N/A	.0012	.007	.001	0.03	.001	0.1	1.2

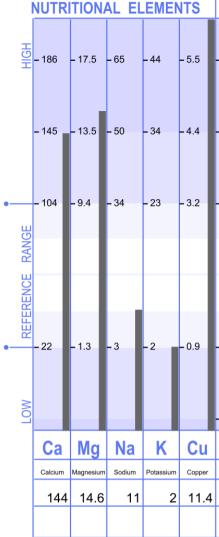
> J Altern Complement Med. 2019 Jun;25(6):567-577. doi: 10.1089/acm.2018.0363.

Micronutrients in Atopic Dermatitis: A Systematic

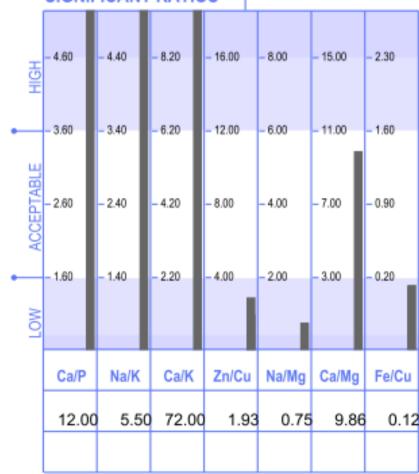

	1 Base	A.	Mr.																							
		NUTR	TION	AL EL	EME	NTS											Т	OXIC	ELE	MENT	S					
	HOH	- 186	- 17.5	- 65	- 44	- 5.5	- 35	- 32	- 3.5	212	- 0.14	- 0.20	- 1.66	010	017	-7141	-	.032	0431	049	011	- 0.53	028	- 0.7	- 7.0	
		- 145	- 13.5	- 50	- 34	-4.4	- 29	- 27	- 2.8	162	- 0.11	- 0.16	- 1.25	008	013	- 6335	-	.027	0369	042	009	- 0.45	024	- 0.6	- 6.0	
-	•—	- 104	- 9.4	- 34	- 23	- 3.2	- 22	-21	- 2.0	112	- 0.08	- 0.12	- 0.83	005	009	- 5528	-	.023	0308	035	800. –	- 0.38	020	- 0.5	- 5.0	HIG
	CE RANGE				_														0246 0185							-
	REFERENCE		- 1.3	- 3	-2	- 0.9	-9	- 10	- 0.5	012	- 0.02	- 0.04	- 0.00	000	001	- 3915			0123							
	LOW						-3	- 5				- 0.00		<<		- 3109					<<			<<		RANGE
		Са	Mg	Na	Κ	Cu	Zn	Р	Fe	Mn	Cr	Se	в	Со	Мо	S		Sb	U	As	Be	Hg	Cd	Pb	AI	
		Calcium	Magnesium	Sodium	Potasaium	Copper	Zinc	Phosphorus	Iron	Manganese	Chromium	Selenium	Boron	Cobait	Molybdenun	n Sulfur	4	ntimony	Uranium	Arsenic	Berylium	Mercury	Cadmium	Lead	Aluminum	
		17	4.5	32	23	0.7	16	10	1.0	.018	0.06	0.06	N/A	.001	.009	4169		N/A	.0013	.006	.001	0.01	.001	0.1	0.9	



- Diagnosed at 6yr old
- First strep infection was at 4yr old
- Mom's (and daughter's) concerns:
 - \circ OCD
 - emotional regulation
 - anxiety
- on the verge of a Calcium Shell
- overt copper toxicity
- heavy metal toxicity
 - Uranium can lead to immune system disorders
- Four main concerns with PANDAS:
 - inflammation (brain, gut, systemic)
 - microbiome/infections
 - immune system
 - reinforcements/prevention



	TOXIC ELEMEN	TS
- 35 - 32 - 3.5212 - 0.14 - 0.20 - 1.660	.010017 - 71410320431049	011 -0.53028 -0.7 -7.0
-29 -27 -2.8162 -0.11 -0.16 -1.250		009 -0.45024 -0.6 -6.0
-22 -21 -2.0112 -0.08 -0.12 -0.83		008 -0.38020 -0.5 -5.0
		006 -0.30016 -0.4 -4.0
	0140185021	005 -0.23012 -0.3 -3.0
-9 -10 -0.5012 -0.02 -0.04 -0.000	.000001 - 39150090123014	003 -0.15008 -0.2 -2.0
- 3 - 5 - 0.00	- 3109	
Zn P Fe Mn Cr Se B (Co Mo S Sb U As	Be Hg Cd Pb Al
	Cobalt Molybdenum Sulfur Antimony Uranium Arsenic	
22 12 1.4 .071 0.04 0.13 0.51 .	.003 .005 4255 N/A .0184 .002	2 .001 0.01 .116 0.1 1.9



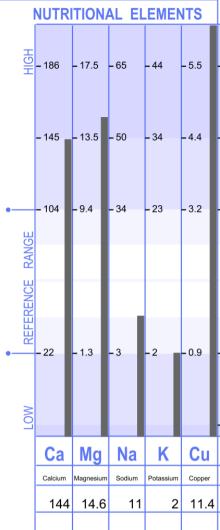
SIGNIFICANT RATIOS

- One of the factors in OCD is neurotransmitter production, particularly serotonin.
 - Serotonin is a neurotransmitter involved in many aspects of human behavior and function.
 - Needs tryptophan (amino acid)
 - Phosphorus is low which we would get easily from protein
 - Iron deficiency relative to Copper can result in imbalances with serotonin production (blood chemistry reveals elevated iron with very low ferritin)
 - low Na/Mg ratio indicates poor adrenal function/mitochondrial dysfunction - and this is key in regulating copper
 - $\circ~$ Thyroid hormone increases the brain content of serotonin
 - high Ca/K ratio indicates poor thyroid hormone production/function; blood chem showed lowered thyroid function with elevated antibodies

	TOXIC ELEMEN	TS
- 35 - 32 - 3.5212 - 0.14 - 0.20 - 1.660	.010017 - 71410320431049	011 -0.53028 -0.7 -7.0
-29 -27 -2.8162 -0.11 -0.16 -1.250		009 -0.45024 -0.6 -6.0
-22 -21 -2.0112 -0.08 -0.12 -0.83		008 -0.38020 -0.5 -5.0
		006 -0.30016 -0.4 -4.0
	0140185021	005 -0.23012 -0.3 -3.0
-9 -10 -0.5012 -0.02 -0.04 -0.000	.000001 - 39150090123014	003 -0.15008 -0.2 -2.0
- 3 - 5 - 0.00	- 3109	
Zn P Fe Mn Cr Se B (Co Mo S Sb U As	Be Hg Cd Pb Al
	Cobalt Molybdenum Sulfur Antimony Uranium Arsenic	
22 12 1.4 .071 0.04 0.13 0.51 .	.003 .005 4255 N/A .0184 .002	2 .001 0.01 .116 0.1 1.9

SIGNIFICANT RATIOS

Comparative Study > J Pineal Res. 1998 Jan;24(1):15-21. doi: 10.1111/j.1600-079x.1998.tb00361.x.


The interaction of melatonin and its precursors with aluminium, cadmium, copper, iron, lead, and zinc: an adsorptive voltammetric study

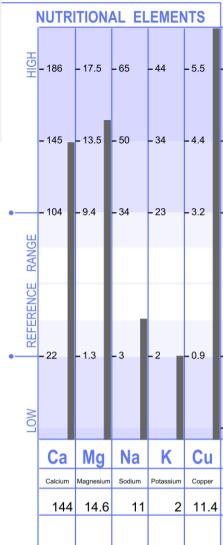
J Limson ¹, T Nyokong, S Daya Affiliations + expand PMID: 9468114

DOI: 10.1111/j.1600-079x.1998.tb00361.x

• Metal complexes that were formed:

 "Aluminium with melatonin, tryptophan, and serotonin; cadmium with melatonin and tryptophan; copper with melatonin and serotonin; iron with melatonin and serotonin; lead with melatonin, tryptophan, and serotonin; and zinc with melatonin and tryptophan."

										•	ΓΟΧΙΟ	ELE	MENT	S				
- 35	- 32	- 3.5	212	- 0.14	- 0.20	- 1.66	010	017	- 7141		032	0431	049	011	- 0.53	028	- 0.7	- 7.0
- 29	- 27	- 2.8	162	- 0.11	- 0.16	- 1.25	008	013	- 6335		027	0369	042	009	- 0.45	024	- 0.6	- 6.0
- 22	- 21	-20	_ 112	- 0.08	- 0.12	- 0.83	- 005	- 009	- 5528		023	0308	035	008	- 0.38	020	- 0.5	- 5.0
- 22	- 21	- 2.0	112	- 0.00	- 0.12	_ 0.00	003	009	- 5520		018	0246	028	006	- 0.30	016	- 0.4	- 4.0
											014	0185	021	005	- 0.23	012	- 0.3	- 3.0
- 9	- 10	- 0.5	012	- 0.02	- 0.04	- 0.00	000	001	- 3915		009	0123 -	014	003	- 0.15	008	- 0.2	- 2.0
- 3	- 5				- 0.00				- 3109					<<	<<		<<	
Zn	Ρ	Fe	Mn	Cr	Se	В	Со	Мо	S		Sb	U	As	Be	Hg	Cd	Pb	AI
Zinc	Phosphorus	Iron	Manganese	Chromium	Selenium	Boron	Cobalt	Molybdenum	Sulfur		Antimony	Uranium	Arsenic	Beryllium	Mercury	Cadmium	Lead	Aluminum
22	12	1.4	.071	0.04	0.13	0.51	.003	.005	4255		N/A	.0184	.002	.001	0.01	.116	0.1	1.9


> Biol Trace Elem Res. 2012 Sep;148(3):275-80. doi: 10.1007/s12011-012-9371-3. Epub 2012 Mar 2.

Alterations of serum zinc, copper, manganese, iron, calcium, and magnesium concentrations and the complexity of interelement relations in patients with obsessive-compulsive disorder

Hasanuzzaman Shohag ¹, Ashik Ullah, Shalahuddin Qusar, Mustafizur Rahman, Abul Hasnat

Affiliations + expand PMID: 22383079 DOI: 10.1007/s12011-012-9371-3

" In patients' serum, zinc, iron, and magnesium concentrations decreased significantly (p<0.05) compared to the controls. Serum manganese and calcium concentrations were significantly higher (p<0.05) in patients compared to the controls. These data showed a definite imbalance in the interelement relations in obsessive-compulsive disorder patients compared to controls and therefore suggest a disturbance in the element homeostasis."
 © Nina-Marie Rueda, ND | www.doctorninamarie.com | IG: edoctorninamarie

											-	τοχις	ELE	MENT	S				
	- 35	- 32	- 3.5	212	- 0.14	- 0.20	- 1.66	010	017	- 7141		032	0431	049	011	- 0.53	028	- 0.7	- 7.0
	- 29	- 27	- 2.8	162	- 0.11	- 0.16	- 1.25	008	013	- 6335		027	0369	042	009	- 0.45	024	- 0.6	- 6.0
	- 22	- 21	-20	- 112	- 0.08	- 0.12	-0.83	- 005	- 009	- 5528		023	0308	035	008	- 0.38	020	- 0.5	- 5.0
		- 21	- 2.0		- 0.00	- 0.12	- 0.00	000	000	- 5525		018	0246	028	006	- 0.30	016	- 0.4	- 4.0
												014	0185	021	005	- 0.23	012	- 0.3	- 3.0
ŀ	- 9	- 10	- 0.5	012	- 0.02	- 0.04	- 0.00	000	001	- 3915		009	0123	014	003	- 0.15	008	- 0.2	- 2.0
•	- 3	- 5				- 0.00				- 3109					<<	<<		<<	
	Zn	Ρ	Fe	Mn	Cr	Se	В	Со	Мо	S		Sb	U	As	Be	Hg	Cd	Pb	AI
	Zinc	Phosphorus	Iron	Manganese	Chromium	Selenium	Boron	Cobalt	Molybdenum	Sulfur		Antimony	Uranium	Arsenic	Beryllium	Mercury	Cadmium	Lead	Aluminum
	22	12	1.4	.071	0.04	0.13	0.51	.003	.005	4255		N/A	.0184	.002	.001	0.01	.116	0.1	1.9

- Copper Toxicity
 - Cu's roles: electron transport chain, hemoglobin synthesis, neurotransmitter activity, immune system health, cardiovascular health, synthesis of collagen and elastin, iron availability, anti-fungal, anti-mold, and-bacterial.
 - $\circ~$ highest levels of copper are in liver then the brain
 - HTMA optimal measurement is 2.2
 - excessive levels of Cu can cause physical and mental dysfunction
 - $\circ~$ body needs Ceruloplasmin for the regulation of copper
 - adrenals aid in the liver producing this glycoprotein that transports copper for usage
 - poor liver/adrenal function leads to decreased
 Ceruloplasmin
 - bile flow is key for Cu elimination
 - copper stimulates adrenaline leading to anxiety and panic

	NUTR	TION/	AL EL	EMEN.	ſ
HIGH	- 186	- 17.5	- 65	- 44	_
	- 145	- 13.5	- 50	- 34	_
•	- 104	- 9.4	- 34	- 23	_
E RANGE					
REFERENCE RANGE					
LOW	- 22	- 1.3	-3	-2	
	Са	Mg	Na	K	
	Calcium	Magnesium	Sodium	Potassium	
	144	14.6	11	2	

-5.5 -35 -32 -3.5 -212 -0.14 -0.20 -1.66 -0.10 -0.17 -7.141 -4.4 -29 -27 -2.8 -1.62 -0.11 -0.16 -1.25 -0.08 -0.13 -635 -0.22 -0.369 -0.42 -0.09 -0.45 -0.24 -0.66 -6.0 -3.2 -22 -21 -2.0 -1.12 -0.08 -0.12 -0.83 -0.09 -5528 -0.08 -0.08 -0.09 -5528 -0.08 -0.08 -0.09 -0.15 -0.08 -0.10 -0.09 -0.15 -0.09 -0.15 -0.09 -0.16 -0.16 -0.16 -0.18 -0.027 -0.308 -0.38 -0.02 -0.05 -5.0 -3.2 -2.2 -2.1 -2.0 -1.12 -0.08 -0.12 -0.09 -0.15 -0.08 -0.12 -0.01 -0.016 -0.01 -0.016 -0.03 -0.12 -0.03 -0.15 -0.02 -0.01 -0.015 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.	ITS											-	τοχια	ELE	MENT	S					
4.4 -29 -27 -2.8 162 -0.11 -0.16 -1.25 008 013 -6335 008 030 035 008 038 023 0308 035 008 038 023 0308 035 008 016 0.01	- 5.5	- 35	- 32	- 3.5	212	- 0.14	- 0.20	- 1.66	010	017	- 7141		032	0431	049	011	- 0.53	028	- 0.7	- 7.0	
-3.2 -22 -21 -2.0 112 -0.08 -0.12 -0.09 009 -5528 018 028 006 030 016 018 028 006 018 018 018 028 006 018	- 4.4	- 29	- 27	- 2.8	162	- 0.11	- 0.16	- 1.25	008	013	- 6335		027	0369	042	009	- 0.45	024	- 0.6	- 6.0	
- 0.9 - 3.0 - 5													023	0308	035	008	- 0.38	020	- 0.5	- 5.0	
-0.9 -9 -10 -0.5 -0.12 -0.02 -0.04 -0.00 -0.01 -3915 -3 -5 -5 -0.02 -0.00 -0.00 -0.01 -3109 Cu Zn P Fe Mn Cr Se B Co Mo S Copper Zinc Posphorus Ion Maganese Chroniu Seniui Boro Cobe Mo S Minimory Marine Mercin Arein	- 3.2	- 22	- 21	- 2.0	112	- 0.08	- 0.12	- 0.83	005	009	- 5528		018	0246	028	006	- 0.30	016	- 0.4	- 4.0	
-3 -5 -5 -0.00 -3.109 -3.1													014	0185	021	005	- 0.23	012	- 0.3	- 3.0	
Cu Zn P Fe Mn Cr Se B Co Mo S Copper Zinc Phosphorus Iron Manganese Chromium Selenium Boro Cobalt Molybdenum Sulfur Sulfur Antimony Uranium Arseine Beryllium Mercury Cadmium Lead Aluminum	- 0.9	- 9	- 10	- 0.5	012	- 0.02	- 0.04	- 0.00	000	001	- 3915		009	0123	014	003	- 0.15	008	- 0.2	- 2.0	2
Cu Zn P Fe Mn Cr Se B Co Mo S Copper Zinc Phosphorus Iron Maganese Chromium Selenium Selenium Sobat Molybdenum Sulfur Sulfur Antimony Uranium Arseine Beryllium Mercury Cadmium Lead Aluminum		- 3	- 5				- 0.00				- 3109					<<	<<		<<		
	Cu	Zn	Р	Fe	Mn	Cr	Se	В	Со	Мо	S		Sb	U	As	_		Cd		ΑΙ	
11.4 22 12 1.4 .071 0.04 0.13 0.51 .003 .005 4255 N/A .0184 .002 .001 0.01 .116 0.1 1.9	Copper	Zinc	Phosphorus	Iron	Manganese	Chromium	Selenium	Boron	Cobalt	Molybdenum	Sulfur		Antimony	Uranium	Arsenic	Beryllium	Mercury	Cadmium	Lead	Aluminum	
	11.4	22	12	1.4	.071	0.04	0.13	0.51	.003	.005	4255		N/A	.0184	.002	.001	0.01	.116	0.1	1.9	

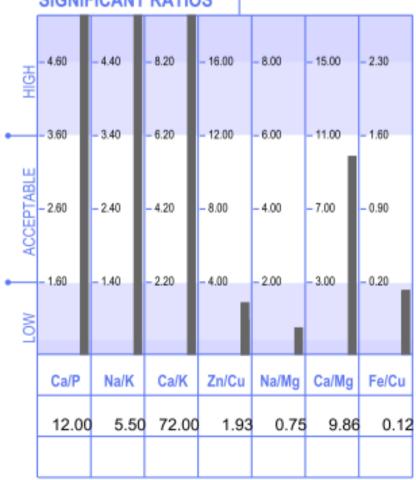
SIGNIFICANT RATIOS

1							
HIGH	- 4.60	- 4.40	- 8.20	- 16.00	- 8.00	- 15.00	- 2.30
	- 3.60	- 3.40	- 6.20	- 12.00	- 6.00	- 11.00	- 1.60
TABLE		- 2.40	- 4.20	- 8.00	-4.00	- 7.00	- 0.90
ACCEPTABLE	- 1.60	- 1.40	- 2.20	- 4.00	-2.00	- 3.00	- 0.20
NON	1.00	1.40	2.20	4.00	2.00	5.00	0.20
	Ca/P	Na/K	Ca/K	Zn/Cu	Na/Mg	Ca/Mg	Fe/Cu
	12.00	5.50	72.00	1.93	0.75	9.86	0.12

Copper toxicity may be involved in the dysregulation of serotonin.

"...there is the possibility that unbound copper is available to interact with extracellular components. Our data show that the interaction between copper and important neurotransmitter, 5-HT [serotonin], is toxic to undifferentiated PC12 cells. This appears to be copper specific as iron and zinc had little effect."

Copper induced oxidation of serotonin: analysis of products and toxicity


Christopher E Jones ¹, Clare K Underwood, Elizabeth J Coulson, Paul J Taylor

Affiliations + expand PMID: 17663749 DOI: 10.1111/j.1471-4159.2007.04602.x

© Nina-Marie Rueda, ND | www.doctorninamarie.com | IG: edoctorninamarie


1	.EMEN	ITS]										тохіс	ELE	MENT	S				
	- 44	- 5.5	- 35	- 32	- 3.5	212	- 0.14	- 0.20	- 1.66	010	017	- 7141	032	0431	049	011	- 0.53	028	- 0.7	- 7.0
	- 34	- 4.4	- 29	- 27	- 2.8	162	- 0.11	- 0.16	- 1.25	008	013	- 6335	027	0369	042	009	- 0.45	024	- 0.6	- 6.0
						110		0.40	0.00			5500	023	0308	035	008	- 0.38	020	- 0.5	- 5.0
	- 23	- 3.2	- 22	- 21	- 2.0	112	- 0.08	- 0.12	- 0.83	005	009	- 5528	018	0246	028	006	- 0.30	016	- 0.4	- 4.0
													014	0185	021	005	- 0.23	012	- 0.3	- 3.0
	-2	- 0.9	- 9	- 10	- 0.5	012	- 0.02	- 0.04	- 0.00	000	001	- 3915	009	0123 -	014	003	- 0.15	008	- 0.2	- 2.0
			-3	- 5				- 0.00				- 3109				<<	<<		<<	
	Κ	Cu	Zn	Р	Fe	Mn	Cr	Se	В	Со	Мо	S	Sb	U	As	Be	Hg	Cd	Pb	ΑΙ
n	Potassium	Copper	Zinc	Phosphorus	Iron	Manganese	Chromium	Selenium	Boron	Cobalt	Molybdenum	Sulfur	Antimony	Uranium	Arsenic	Beryllium	Mercury	Cadmium	Lead	Aluminum
1	2	11.4	22	12	1.4	.071	0.04	0.13	0.51	.003	.005	4255	N/A	.0184	.002	.001	0.01	.116	0.1	1.9

SIGNIFICANT RATIOS

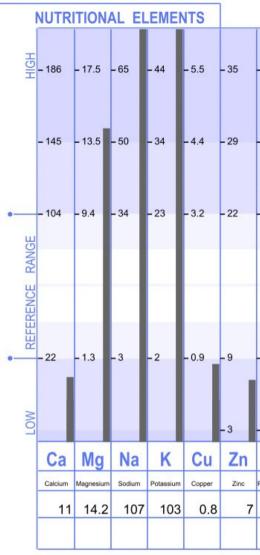
Autism: 5, M

- Mom's concerns:
 - supporting a neurodivergent brain
 - diagnosed as "low" on the spectrum
 - allergies
 - behavior
- Top 5 things:
 - Heavy metal toxicity
 - Nutrient deficiency
 - Fungal infection
 - Genetic SNPs/methylation issues
 - Poor blood sugar regulation
- What do we see?
 - Three highs (Ca is the low macromineral)
 - Low Cu and Zn immune stress, possible fungal infection
 - Zinc is a key nutrient in speech development
 - Heavy metal toxicity
 - High Cr and V poor blood glucose regulation

- High Boron needed for adrenal function; can lead to:
 - irritability, noise sensitivity, fears
 - chronic overload can cause poor appetite, nausea, weight loss
- Low Sulfur detoxification (sulfation) impaired
- Ca/Mg/Zn calm the CNS

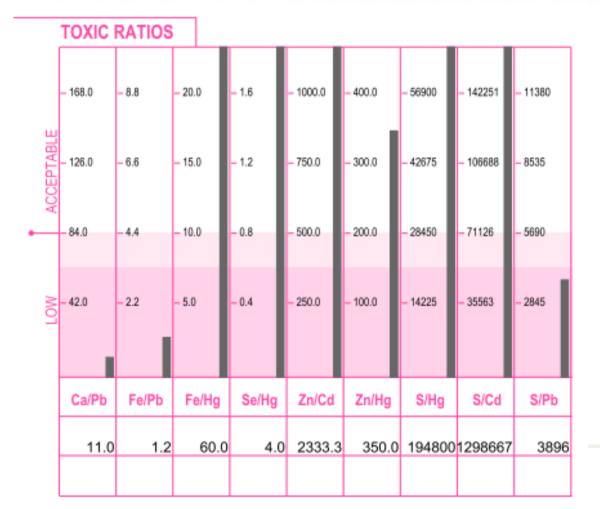
Autism: 5, M

Autism and Heavy Metals Toxicity:

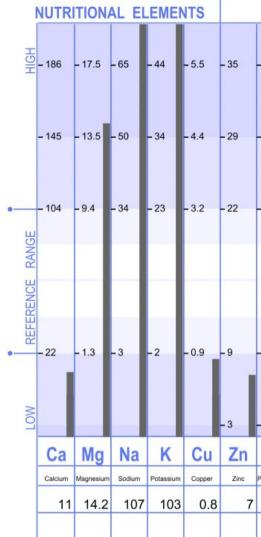

- Study notes connection between various metals:
 - "We got high associations and significant values between of lead, mercury and cadmium concentrations and ASD. Study results indicate that there are significant differences of hair essential trace elements concentrations in children with autism spectrum disorder comparing with healthy children group. The result obtained also showed high contamination to heavy metals such as lead, mercury and cadmium in ASD children compared to healthy ones."
 - Children with genetic problems, malnourished children, children from families with social problems were excluded from the study.

> Georgian Med News. 2015 Nov:(248):77-82.

HAIR HEAVY METAL AND ESSENTIAL TRACE ELEMENT CONCENTRATION IN CHILDREN WITH AUTISM SPECTRUM DISORDER


T Tabatadze¹, L Zhorzholiani¹, M Kherkheulidze¹, E Kandelaki¹, T Ivanashvili¹ Affiliations + expand PMID: 26656556

© Nina-Marie Rueda, ND | www.doctorninamarie.com | IG: @doctorninamarie

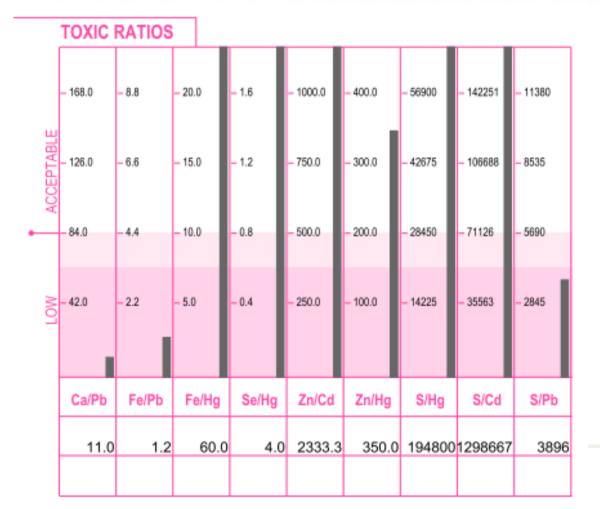

									TOXI	C ELE	MENT	S					
- 32	- 3.5	212	- 0.14	- 0.20	- 1.66	010	017	- 7141	032	0431	049	011	- 0.53	028	- 0.7	- 7.0	
- 27	- 2.8	162	- 0.11	- 0.16	- 1.25	008	013	- 6335	027	0369	042	009	- 0.45	024	- 0.6	- 6.0	
-21	- 2.0	112	- 0.08	- 0.12	- 0.83	005	009	- 5528	023	0308	035	008	- 0.38	020	- 0.5	- 5.0	Т
									018	0246	028	006	- 0.30	016	- 0.4	- 4.0	HIGH
						1			014	0185	021	005	- 0.23	012	- 0.3	- 3.0	
- 10	- 0.5	012	- 0.02	- 0.04	- 0.00	000	001	- 3915	009	0123	014	003	- 0.15	008	- 0.2	- 2.0	RA
- 5				- 0.00				- 3109				<<					RANGE
Ρ	Fe	Mn	Cr	Se	В	Со	Мо	S	Sb	U	As	Be	Hg	Cd	Pb	AI	
Phosphorus	Iron	Manganese	Chromium	Selenium	Boron	Cobalt	Molybdenum	Sulfur	Antimon	Uranium	Arsenic	Beryllium	Mercury	Cadmium	Lead	Aluminum	
12	1.2	.053	0.11	0.08	1.40	.002	.006	3896	N//	A .0001	.026	.001	0.02	.003	1.0	1.0	

Autism: 5, M

- The contaminations to heavy metals were detected in case of lead (78% and 16%), mercury (43% and 10%) and cadmium (38% and 8%)
- The study statistical results indicated, that deficient concentrations of trace elements such as zinc, manganese, molybdenum and selenium in hair significantly linked with ASD

> Georgian Med News. 2015 Nov:(248):77-82.

HAIR HEAVY METAL AND ESSENTIAL TRACE ELEMENT CONCENTRATION IN CHILDREN WITH AUTISM SPECTRUM DISORDER


T Tabatadze ¹, L Zhorzholiani ¹, M Kherkheulidze ¹, E Kandelaki ¹, T Ivanashvili ¹

Affiliations + expand PMID: 26656556

© Nina-Marie Rueda, ND | www.doctorninamarie.com | IG: @doctorninamarie

									TOXI	C ELE	MENT	S					
- 32	- 3.5	212	- 0.14	- 0.20	- 1.66	010	017	- 7141	032	0431	049	011	- 0.53	028	- 0.7	- 7.0	
- 27	- 2.8	162	- 0.11	- 0.16	- 1.25	008	013	- 6335	027	0369	042	009	- 0.45	024	- 0.6	- 6.0	
-21	- 2.0	112	- 0.08	- 0.12	- 0.83	005	009	- 5528	023	0308	035	008	- 0.38	020	- 0.5	- 5.0	Т
									018	0246	028	006	- 0.30	016	- 0.4	- 4.0	HIGH
						1			014	0185	021	005	- 0.23	012	- 0.3	- 3.0	
- 10	- 0.5	012	- 0.02	- 0.04	- 0.00	000	001	- 3915	009	0123	014	003	- 0.15	008	- 0.2	- 2.0	RA
- 5				- 0.00				- 3109				<<					RANGE
Ρ	Fe	Mn	Cr	Se	В	Со	Мо	S	Sb	U	As	Be	Hg	Cd	Pb	AI	
Phosphorus	Iron	Manganese	Chromium	Selenium	Boron	Cobalt	Molybdenum	Sulfur	Antimon	Uranium	Arsenic	Beryllium	Mercury	Cadmium	Lead	Aluminum	
12	1.2	.053	0.11	0.08	1.40	.002	.006	3896	N//	A .0001	.026	.001	0.02	.003	1.0	1.0	

An important consideration:

> Environ Int. 2021 Jul:152:106468. doi: 10.1016/j.envint.2021.106468. Epub 2021 Mar 22.

Metal and essential element concentrations during pregnancy and associations with autism spectrum disorder and attention-deficit/hyperactivity disorder in children

Thea S Skogheim¹, Kjell Vegard F Weyde², Stephanie M Engel³, Heidi Aase², Pål Surén², Merete G Øie⁴, Guido Biele², Ted Reichborn-Kjennerud⁵, Ida H Caspersen⁶, Mady Hornig⁷, Line S Haug⁸, Gro D Villanger²

Affiliations + expand PMID: 33765546 DOI: 10.1016/j.envint.2021.106468 Free article

"...several associations between levels of metals and elements during gestation and ASD and ADHD in children. The most notable ones involved arsenic, cadmium, copper, mercury, manganese, magnesium, and lead. Our results suggest that even population levels of these compounds may have negative impacts on neurodevelopment. As we observed mainly similarities among the metals' and elements' impact on ASD and ADHD, it could be that the two disorders share some neurochemical and neurodevelopmental pathways."

An important consideration:

PLoS Med. 2008 May; 5(5): e101. Published online 2008 May 27. doi: 10.1371/journal.pmed.0050101

PMCID: PMC2689664 | PMID: 18507497

Association of Prenatal and Childhood Blood Lead Concentrations with Criminal Arrests in Early Adulthood

John Paul Wright,¹ Kim N Dietrich,^{2,*} M. Douglas Ris,³ Richard W Hornung,³ Stephanie D Wessel,² Bruce P Lanphear,³ Mona Ho,³ and Mary N Rae²

John Balmes, Academic Editor

- "The objective of this study was to determine if prenatal and childhood blood lead concentrations are associated with arrests for criminal offenses."
- "Prenatal and postnatal blood lead concentrations are associated with higher rates of total arrests and/or arrests for offenses involving violence."
- This study did not assess all criminal behavior as not all lead to an arrest.

Autism: 5, M

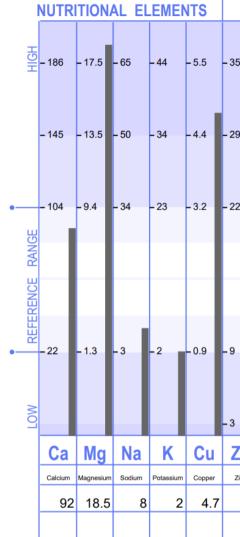
Environ Health. 2016; 15: 23. Published online 2016 Feb 16. doi: 10.1186/s12940-016-0122-3

PMCID: PMC4756504 | PMID: 26884052

The relationship between atmospheric lead emissions and aggressive crime: an ecological study

Mark Patrick Taylor,^M Miriam K. Forbes, Brian Opeskin, Nick Parr, and Bruce P. Lanphear

Author information Article notes Copyright and License information <u>PMC Disclaimer</u>


- "Accounting for socio-demographic covariates, lead in air remained a strong predictor of assault rates."
- "Lead in air was the strongest predictor in the model, accounting for 29.8 % of the variance in assault rates 21 years later. By comparison, the proportion of the population aged 15–24 accounted for 5.4 % of the variance, and the proportion of the population who completed secondary school accounted for 5.0 %. Median income was not a significant predictor in the model."

- 7wks pregnant
- Concerns:
 - nausea
 - liver support
 - blood sugar regulation
 - \circ thyroid dysfunction
 - \circ anxiety
- What do we see:
 - $\circ\,$ Ca elevated
 - $\circ\,$ Na and K low
 - High Cu
 - \circ High Zn
 - \circ Low Mn
 - High Cr
 - \circ Low Mo
 - Low Lithium

© Nina-Marie Rueda, ND | www.doctorninamarie.com | IG: edoctorninamarie

	SIGNIF	ICANT	RATIO	S			
HIGH	- 4.60	- 4.40	- 8.20	- 16.00	- 8.00	- 15.00	- 2.30
•	- 3.60	- 3.40	- 6.20	- 12.00	- 6.00	- 11.00	- 1.60
LOW ACCEPTABLE	- 2.60 - 1.60	- 2.40	- 4.20 - 2.20	- 8.00	- 4.00	- 7.00	90
	Ca/P	Na/K	Ca/K	Zn/Cu	Na/Mg	Ca/Mg	Fe/Cu
	5.41	4.00	46.00	4.04	.43	4.97	.26

TOXIC RATIOS

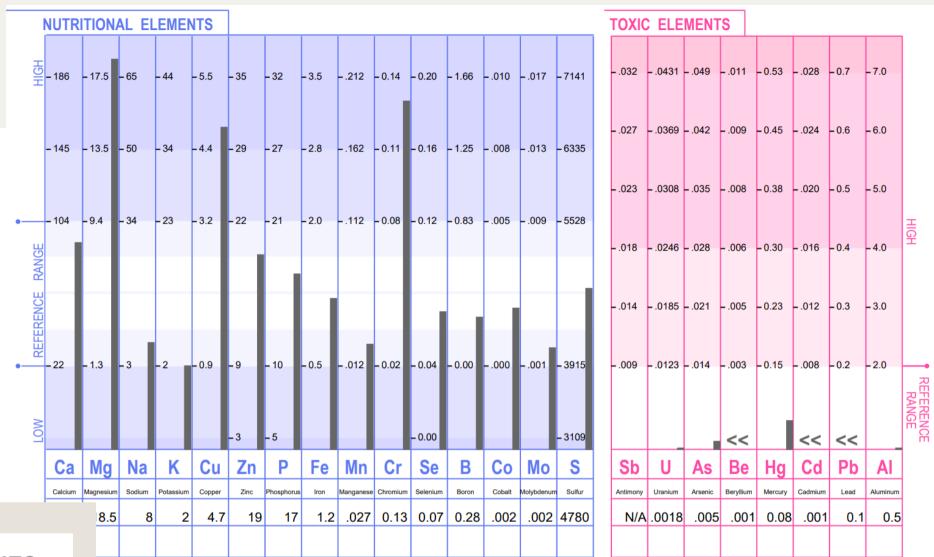
	- 168.0	- 8.8	- 20.0	– 1.6	- 1000.0	- 400.0	- 56900	- 142251	- 11380	
ACCEPTABLE	- 126.0	- 6.6	- 15.0	- 1.2	- 750.0	- 300.0	- 42675	- 106688	- 8535	
	- 84.0	- 4.4	- 10.0	- 0.8	- 500.0	- 200.0	- 28450	- 71126	- 5690	
LOW	- 42.0	-2.2	- 5.0	- 0.4	- 250.0	- 100.0	- 14225	- 35563	- 2845	
	Ca/Pb	Fe/Pb	Fe/Hg	Se/Hg	Zn/Cd	Zn/Hg	S/Hg	S/Cd	S/Pb	
	920.0	12.0	15.0	0.9	19000.0	237.5	59750	4780000	47800	

										-	τοχια	ELE	MENT	S				
35	- 32	- 3.5	212	- 0.14	- 0.20	- 1.66	010	017	- 7141		032	0431	049	011	- 0.53	028	- 0.7	- 7.0
29	-27	- 2.8	162	- 0.11	- 0.16	- 1.25	008	013	- 6335		027	0369	042	009	- 0.45	024	- 0.6	- 6.0
22	-21	- 2.0	112	- 0.08	- 0.12	- 0.83	005	009	- 5528		023	0308	035	008	- 0.38	020	- 0.5	- 5.0
1											018	0246	028	006	- 0.30	016	- 0.4	- 4.0
											014	0185	021	005	- 0.23	012	- 0.3	- 3.0
	- 10	- 0.5	012	- 0.02	- 0.04	- 0.00	000	001	- 3915 - 3109		009	0123	014	003	- 0.15	008		- 2.0
Zn	Р	Fe	Mn	Cr	Se	В	Со	Мо	S		Sb	U	As	Be	Hg	Cd	Pb	AI
Zinc	Phosphorus	Iron	Manganese	Chromium	Selenium	Boron	Cobalt	Molybdenum	Sulfur		Antimony	Uranium	Arsenic	Beryllium	Mercury	Cadmium	Lead	Aluminum
19	17	1.2	.027	0.13	0.07	0.28	.002	.002	4780		N/A	.0018	.005	.001	0.08	.001	0.1	0.5

ADDITIONAL ELEMENTS

HIGH	006	- 0.41	053	0358	011	12	005	0005	018	- 0.87	- 0.11	36	005	- 0.09	
		- 0.27	035	0244	007	08	003	0003	012	- 0.58	- 0.07	24	003	- 0.06	
REFERENCE RANGE															
	000	- 0.00	000	0017	000	00	000	0000	000	- 0.00	- 0.00	00	000	- 0.00	
	Ge	Ba	Bi	Rb	Li	Ni	Pt	TI	V	Sr	Sn	Ti	W	Zr	
	Germanium	Barium	Bismuth	Rubidium	Lithium	Nickel	Platinum	Thallium	Vanadium	Strontium	Tin	Titanium	Tungsten		
	.001	0.07	.004	.0016	.001	.01	.001	.0001	.006	0.29	0.03	.08	.001	0.01	

- High Copper:
 - Study: Pregnancy causes an increase in Cu levels (estrogen), which can lead to:
 - premature birth, low birth weight, vomiting, diarrhea, gestational diabetes.
 - this client had a past of birth control use (8yrs)
 - "Increased copper accumulation in the mother can lead to inherited copper toxicity in the children" (Dr. Watts).


> Biomolecules. 2020 Aug 12;10(8):1176. doi: 10.3390/biom10081176. Review

The Role of Fe, Zn, and Cu in Pregnancy

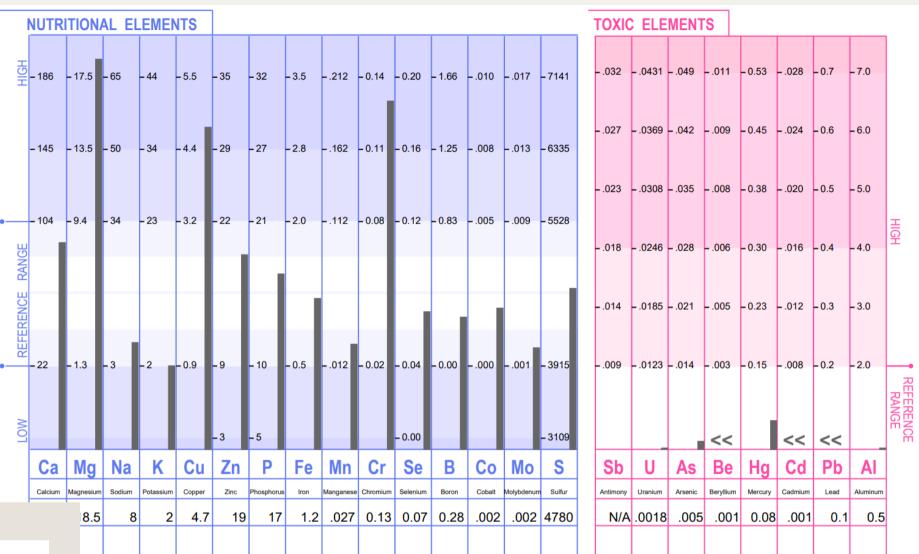
Konrad Grzeszczak¹, Sebastian Kwiatkowski², Danuta Kosik-Bogacka³

Affiliations + expand

PMID: 32806787 PMCID: PMC7463674 DOI: 10.3390/biom10081176

© Nina-Marie Rueda, ND | www.doctorninamarie.com | IG: edoctorninamarie

• Dr. Watts of Trace Elements notes in his book, "Copper can also affect thyroid function through the actions of insulin. Elevated tissue copper increases tissue retention of calcium, which triggers an increase in insulin secretion by the pancreas. Since zinc is required for the storage of insulin, it is possible that the zinc-copper antagonism could be responsible for flooding insulin in the blood."

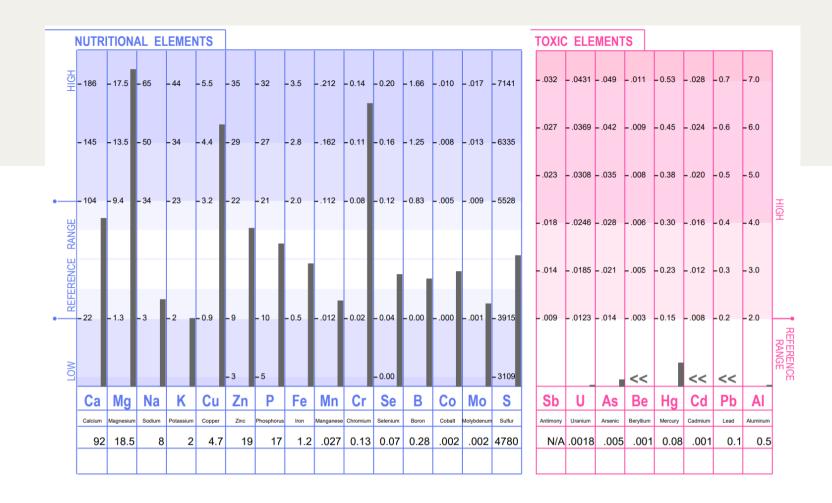

- High Chromium: can lead to nausea, vomiting, allergies, fatigue
- High Mg: can lead to confusion, depression, diarrhea, fatigue, lethargy, low BP, muscle weakness
- Mg and Cr are synergistic minerals

Observational Study > Med Sci Monit. 2021 Sep 12:27:e932032. doi: 10.12659/MSM.932032.

Ratio of Serum Calcium to Magnesium Levels on Pregnancy with and without Preeclampsia

Gatot N Adhipurnawan Winarno¹, Adhi Pribadi¹, Henry Jerikho Maruli¹, Eppy Darmadi Achmad¹, Ruswana Anwar¹, Johanes Cornelius Mose¹, Aisyah Shofiatun Nisa¹, Nurvita Trianasari²

Affiliations + expand PMID: 34510157 PMCID: PMC8444707 DOI: 10.12659/MSM.932032


• study: patients with preeclampsia had higher levels of magnesium and calcium than patients without preeclampsia; same patients also demonstrated significantly lower Ca/Mg ratios than those without preeclampsia.

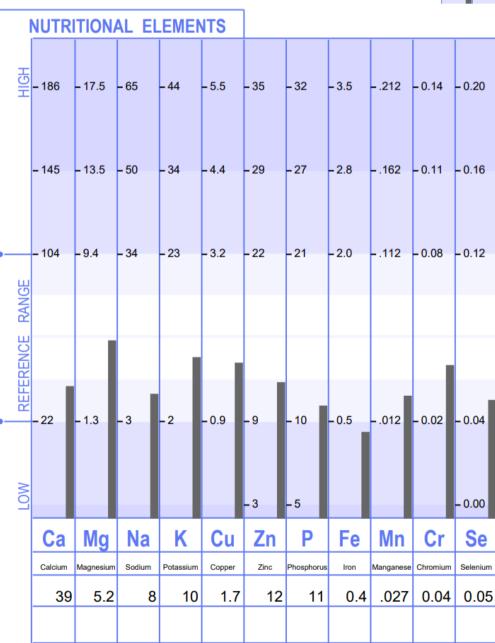
Multicenter Study

> J Clin Endocrinol Metab. 2019 Oct 1;104(10):4295-4303. doi: 10.1210/jc.2019-00109.

A Prospective Study of Early Pregnancy Essential Metal(loid)s and Glucose Levels Late in the Second Trimester

```
Yinnan Zheng<sup>1</sup>, Cuilin Zhang<sup>2</sup>, Marc Weisskopf<sup>13</sup>,
Paige L Williams <sup>3</sup> <sup>4</sup>, Patrick J Parsons <sup>5</sup> <sup>6</sup>,
Christopher D Palmer <sup>5</sup><sup>6</sup>, Germaine M Buck Louis <sup>7</sup>,
Tamarra James-Todd 1 3
Affiliations + expand
PMID: 31095302
PMCID: PMC6736048
DOI: 10.1210/jc.2019-00109
```


- - dental decay
- study: higher copper and lower molybdenum
 - concentrations could increase the risk of glucose
 - dysregulation during pregnancy, with women at higher


 - risk of gestational diabetes mellitus potentially affected to a greater extent.
 - every increase in molybdenum concentration
 - measured during the 1st trimester was associated
 - with 1.2mg/dL lower mean glucose level.

© Nina-Marie Rueda, ND | www.doctorninamarie.com | IG: @doctorninamarie

• Low Mn: deficiency can be related to copper toxicity and

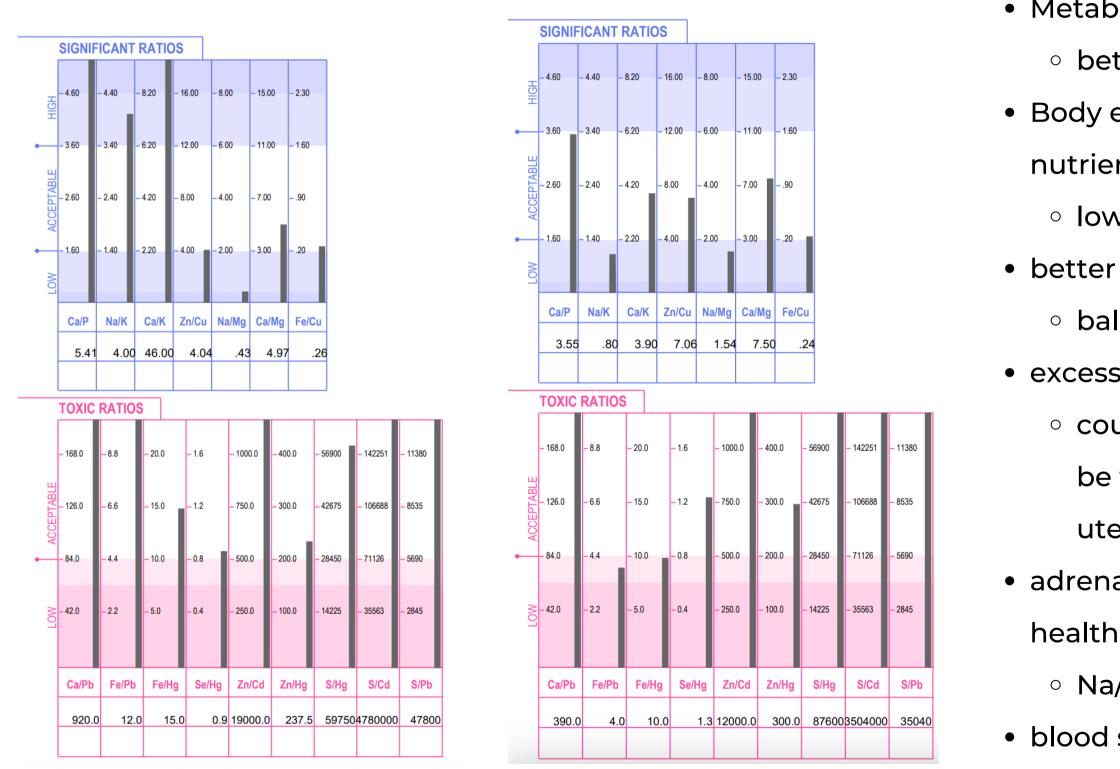
- Recommendations:
 - digestive supports based on GIMAP
 - $\circ~$ personalized mineral supplement with vitamin cofactors
 - Mg glycinate, Mg Malate
 - Sea salt
 - Potassium gluconate
 - Selenium
 - Boron
 - Vitamin E
 - Vitamin K2
 - Vitamin B1
 - Vitamin B3
 - Vitamin B6
 - Vitamin A
 - Vitamin C
 - pregnancy safe binder
 - liver and gallbladder homeopathic supports

© Nina-Marie Rueda, ND | www.doctorninamarie.com | IG: @doctorninamarie

NUTRITION

₽-186 -17.5

- 145 - 13.5


_ 104

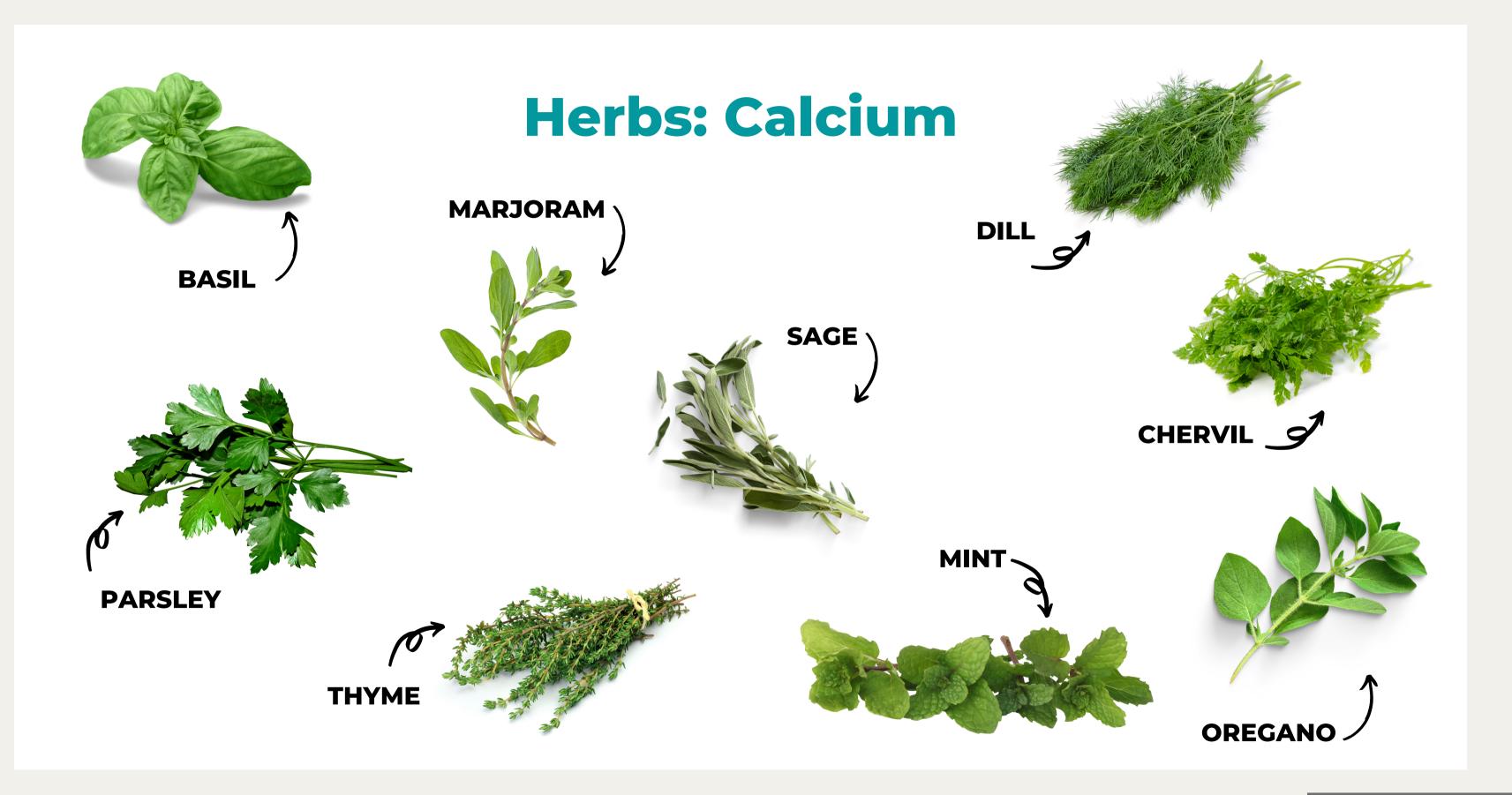
REFERENCE

- 22

- 1.3

-65 -44 -55 -35 -32 -32 -212 -0.14 -020 -166 -010 -017 -7141 -022 -043 -049 -011 -0.53 -026 -021 -030 -043 -049 -011 -0.53 -026 -011 -023 -020 -023 -030 -023 -000 -024 -000 -035 -000 -031 -016 -016 -021 <	N	AL ELI	EMENTS								ΤΟΧΙΟ	ELEMEN	ITS					
India India <thindia< th=""> <thindia< th=""> <thin< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.50</td><td>000</td><td>0.7</td><td>7.0</td><td></td></thin<></thindia<></thindia<>														0.50	000	0.7	7.0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I	- 65 -	44 – 5.5	- 35	- 32 - 3.5	212 -0.14	- 0.20	•1.66 – .01	0 – .017	- 7141	0320	0431049	011	-0.53 -	.028	- 0.7	- 7.0	
-34 -32 -32 -22 -21 -20 -112 -000 -012 -000 -001 -000 -000 -001 -014 -005 -000 -000 -001 -014 -015 -000 -	I										0270	0369042	009 -	- 0.45 -	.024	- 0.6	- 6.0	
-34 -32 -32 -22 -21 -20 -112 -008 -012 -005 -009 -5528 -016 -026 -006 -030 -016 -04 -016 -016 -026 -006 -030 -016 -04 -016 -016 -021 -006 -030 -016 -020 -010 -011 -016 -012 -000 -010 -011 -016 -012 -010 -010 -010 -010 -010 -010 -010 -010 -010 -011 -011 -010 -012 -010 -010 -010 -011 -011 -010 -012 -010 -010 -010 -011 -011 -010 -012 -010 -010 -010 -011 -011 -010 -010 -010 -011 -011 -010 -010 -010 -010 -011 -011 -010 -011 -010 -011 -010 -011 -010 -010 -010 -010 -010 -010 -010 -010 -010 -010 -010 -0	l	- 50 -	34 - 4.4	- 29	- 27 - 2.8	162 -0.11	- 0.16	1.2500	8 – .013	- 6335								
018 .028 .028 .009 -0.03 .010 .04 .40 .010 3 -2 .009 -9 -10 .012 .012 .014 .000 .011 .918 .021 .006 .023 .012 .03 .30 -3 -2 .009 -9 .10 .012 .012 .014 .000 .001 .9915 .009 .012 .014 .000 .011 .010 .011 .000 .010 .011 .011 .010 .012 .014 .000 .011 .010 .012 .014 .000 .011 .010 .012 .014 .010 .011 .010 .010 .011 .011 .010 .011 .011 .010 .011 .011 .010 .011 .011 .010 .011	l										0230	0308 – .035	008 -	- 0.38 -	.020	- 0.5	- 5.0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	l	- 34 -	23 - 3.2	- 22	- 21 - 2.0	112 - 0.08	- 0.12 -	0.8300	5 – .009	- 5528	- 018 - 1	0246 - 028	- 006	0 30	016	-04	-40	HIGH
-3 -2 -0.9 -9 -10 -0.5 -012 -0.04 -0.00 -0.01 -3315 -009 -0123 -014 -003 -0.15 -0.08 -0.2 -2.0 -1.66 010 017 -7141 -032 0431 049 011 -0.53 028 -0.7 -7.0 010 -	l			ы							0101	0240020	000	-0.30 -	.010	- 0.4	- 4.0	
TOXIC ELEMENTS -1.66 010 017 -7141 032 0431 049 011 -0.53 028 -0.7 -7.0 -1.25 008 013 -6335 027 0369 042 009 -0.45 024 -0.6 -6.0 -0.83 005 009 -5528 028 028 020 -0.55 -0.6 -6.0 -0.14 0185 021 005 -0.23 012 -0.3 -3.0 012	۱										0140	0185021	005 -	- 0.23 -	.012	- 0.3	- 3.0	
TOXIC ELEMENTS -1.66 010 017 -7141 032 0431 049 011 -0.53 028 -0.7 -7.0 -1.25 008 013 -6335 027 0369 042 009 -0.45 024 -0.6 -6.0 -0.83 005 009 -5528 028 028 020 -0.55 -0.6 -6.0 -0.14 0185 021 005 -0.23 012 -0.3 -3.0 012	l								١.									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	l	-3 -	2 - 0.9	-9	- 10 - 0.5	012 - 0.02	- 0.04 -	0.00 – .00	0 – .001	- 3915	0091	0123014	003 -	- 0.15 -	.008	- 0.2	- 2.0	• RE
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ļ																	FEREN
-1.66 010 017 -7141 032 0431 049 011 -0.53 028 -0.7 -7.0 Image: Constraint of the constraint	_					TOXIC	ELE	MENT	S									 R
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																		
-1.25 -0.08 -0.13 -6335 -0.23 -0.09 -5528 -0.23 -0.308 -0.35 -0.08 -0.38 -0.20 -0.5 -5.0 -0.18 -0.24 -0.28 -0.06 -0.30 -0.16 -0.4 -4.0 -0.18 -0.18 -0.24 -0.28 -0.05 -0.23 -0.12 -0.3 -3.0	$\left \right $	- 1.66	010	017	-7141	032	0431	049	011	- 0.53	028	- 0.7	- 7.0		001	0.1	0.5	
-1.25 -0.08 -0.13 -6335 -0.23 -0.09 -5528 -0.23 -0.308 -0.35 -0.08 -0.38 -0.20 -0.5 -5.0 -0.18 -0.24 -0.28 -0.06 -0.30 -0.16 -0.4 -4.0 -0.18 -0.18 -0.24 -0.28 -0.05 -0.23 -0.12 -0.3 -3.0																		
-0.83005009 -55280140185026028008 -0.38020 -0.5 -5.0 0180180246028006 -0.30016 -0.4 -4.0						027	0369	042	009	- 0.45	024	- 0.6	- 6.0					
- 0.83 009 - 5528 018 0246 028 006 - 0.30 016 - 0.4 - 4.0 - 0.11 018 0185 021 005 - 0.23 012 - 0.3 - 3.0	ł	- 1.25	008	013	- 6335													
- 0.83 009 - 5528 018 0246 028 006 - 0.30 016 - 0.4 - 4.0 - 0.11 018 0185 021 005 - 0.23 012 - 0.3 - 3.0																		
018 0246 028 006 -0.30 016 -0.4 -4.0 014 0145 021 005 -0.23 012 -0.3 -3.0						023	0308	035	008	- 0.38	020	- 0.5	- 5.0					
	ł	- 0.83	005	009	- 5528													
						018	0246	028	006	- 0.30	016	- 0.4	- 4.0	Ϋ́				
	İ					014	0185	021	005	- 0.23	012	-0.3	- 3.0					
	l							.02.		0.20		0.0	0.0					
		1																
	ŀ	- 0.00	000	001	- 3915	009	0123	014	003	- 0.15	008	- 0.2	- 2.0		•			
	l													R	í			
-3109 <<< << << <<	l													NGE				
-3109 << << << ⁶	ļ				- 3109				<<		<<	<<			1			
B Co Mo S Sb U As Be Hg Cd Pb AI		В	Co	Мо	S	Sb	U	As	Be	Hg	Cd	Pb	AI					
Boron Cobalt Molybdenum Sulfur Sulfur Antimony Uranium Arsenic Beryllium Mercury Cadmium Lead Aluminum	ļ	Boron	Cobalt	Molybdenun	n Sulfur	Antimony	Uranium	Arsenic	Beryllium	Mercury	Cadmium	Lead	Aluminum					
0.13 .001 .002 3504 N/A .0003 .002 .001 0.04 .001 0.1 1.5		0.13	.001	.002	3504	N/A	.0003	.002	.001	0.04	.001	0.1	1.5	5				

- Metabolism in better place
 - better balanced Ca/P ratio
- Body exhausted common with depletion of
 - nutrients in pregnancy
 - low Na/K ratio
- better thyroid function
 - balanced Ca/K ratio
- excess copper gone
 - could be binder and mineral support, could also
 - be that excess copper was passed to baby in-
 - utero
- adrenals are more responsive/better mitochondrial

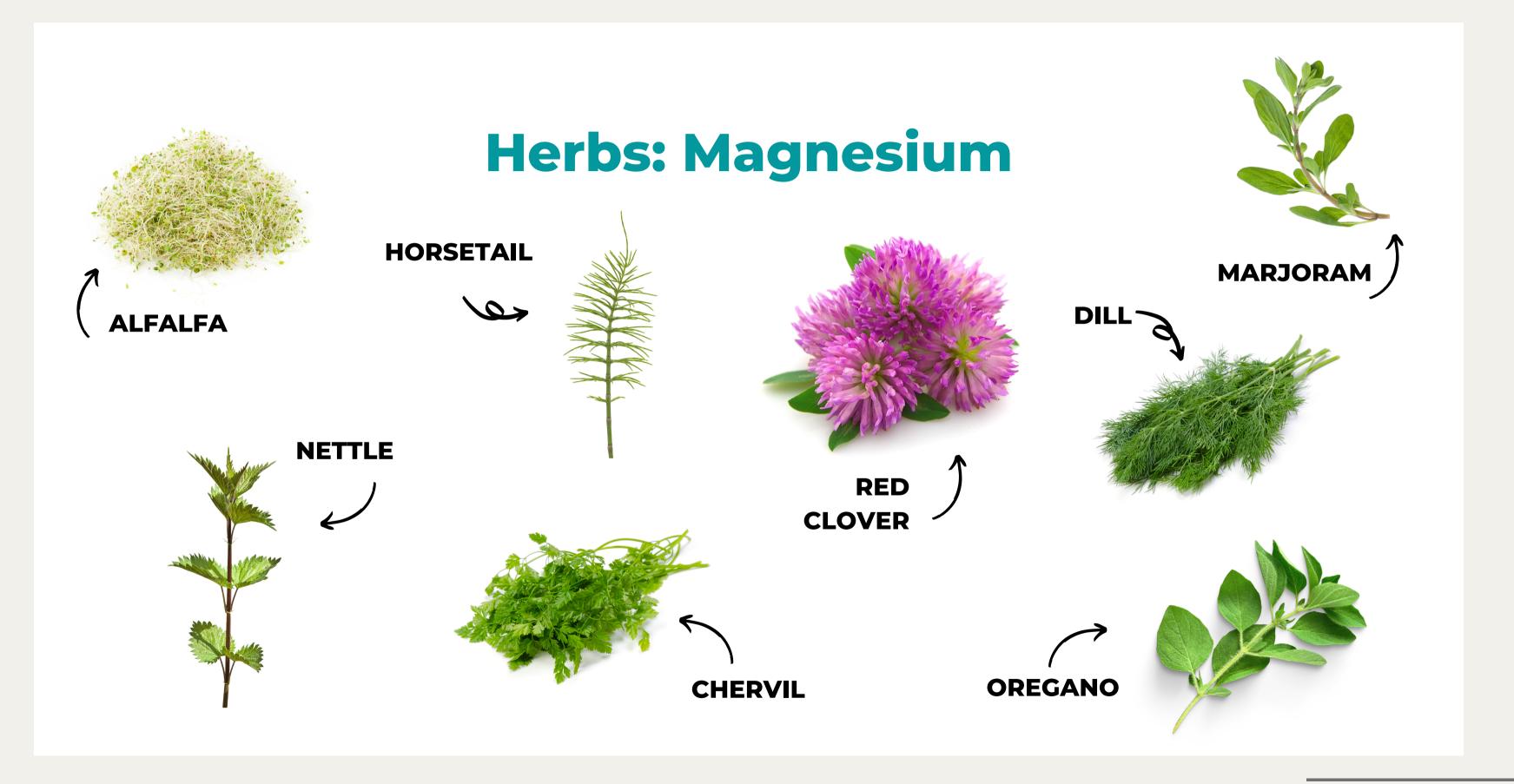

 - Na/Mg ratio increased
- blood sugar regulated
 - balanced Ca/Mg ratio

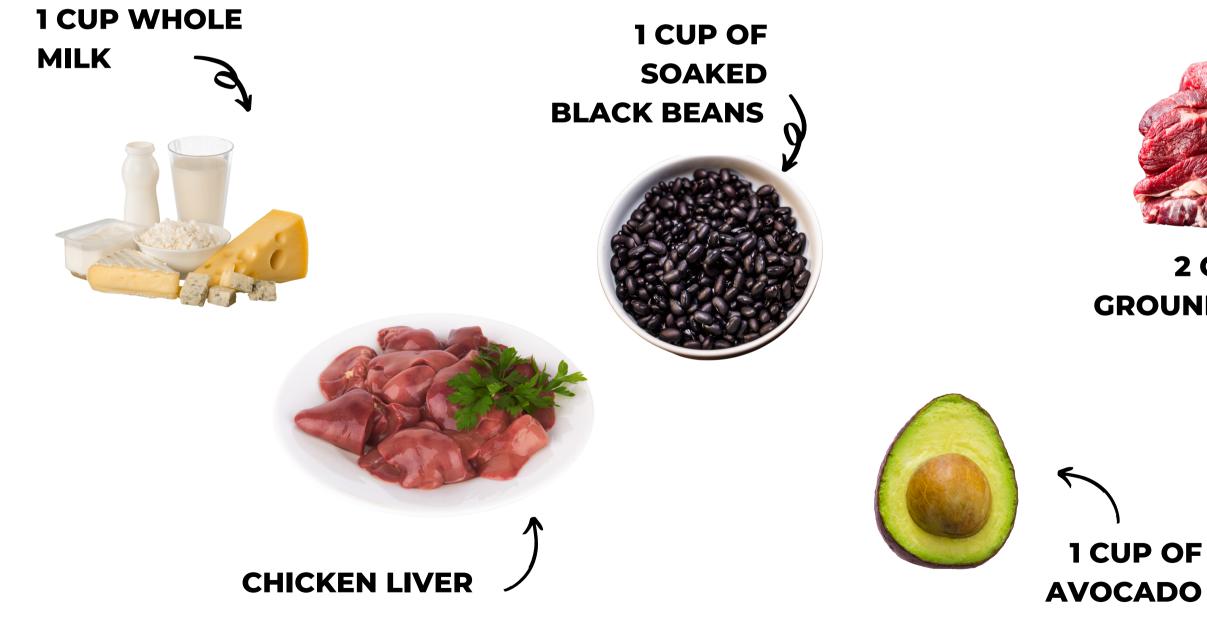
How do we address our mineral levels?

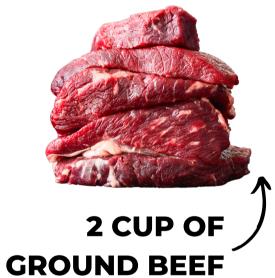
- Food first; always food first.
- Test, don't guess. :)
 - hair tissue mineral analysis (paired with appropriate blood chemistry)
- After food, supplement with key nutrients.

Let's look at some examples of how:

Calcium: Meeting the Minimum


Calcium: Meeting the Minimum

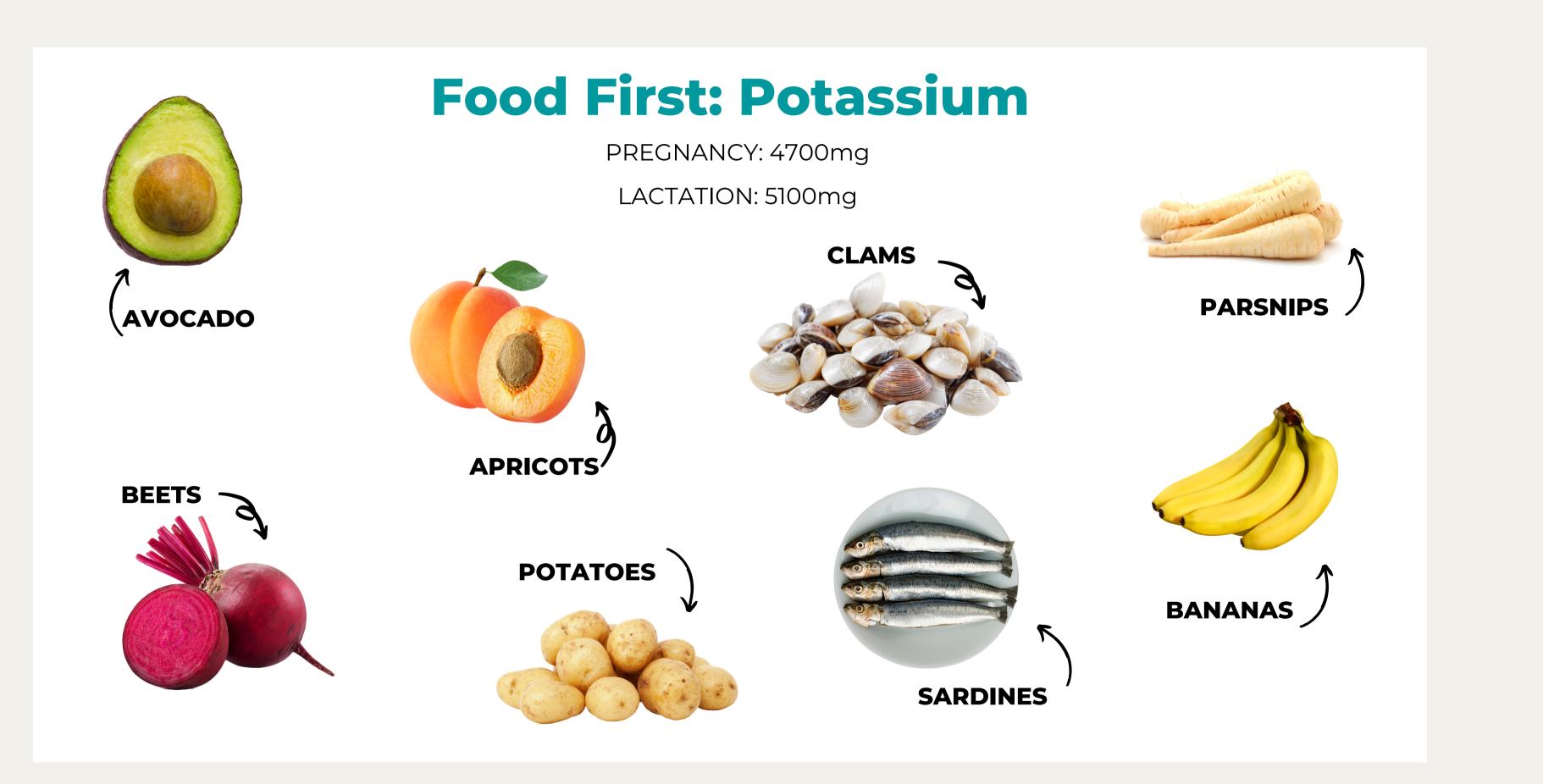

1387.5 mg of Calcium

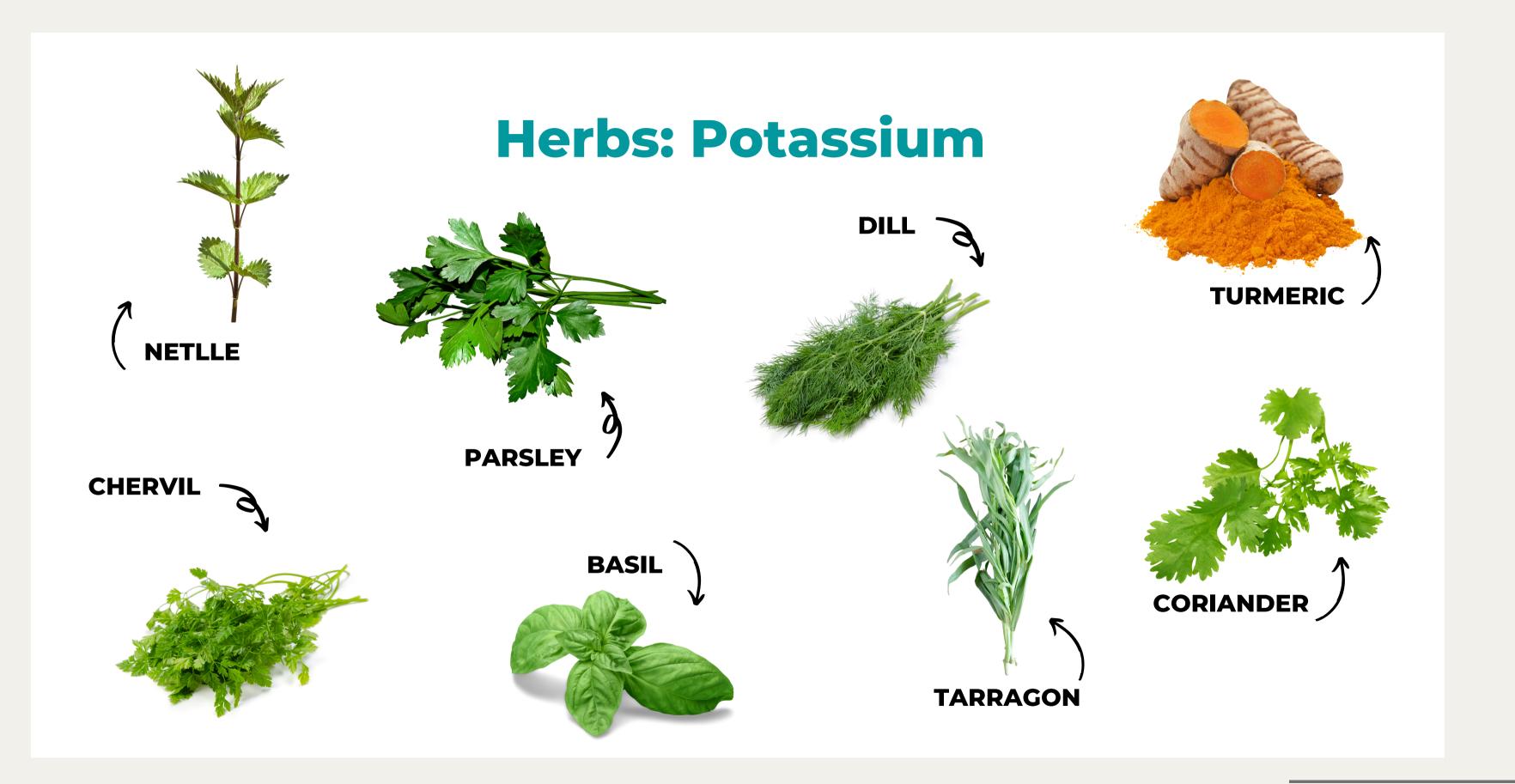


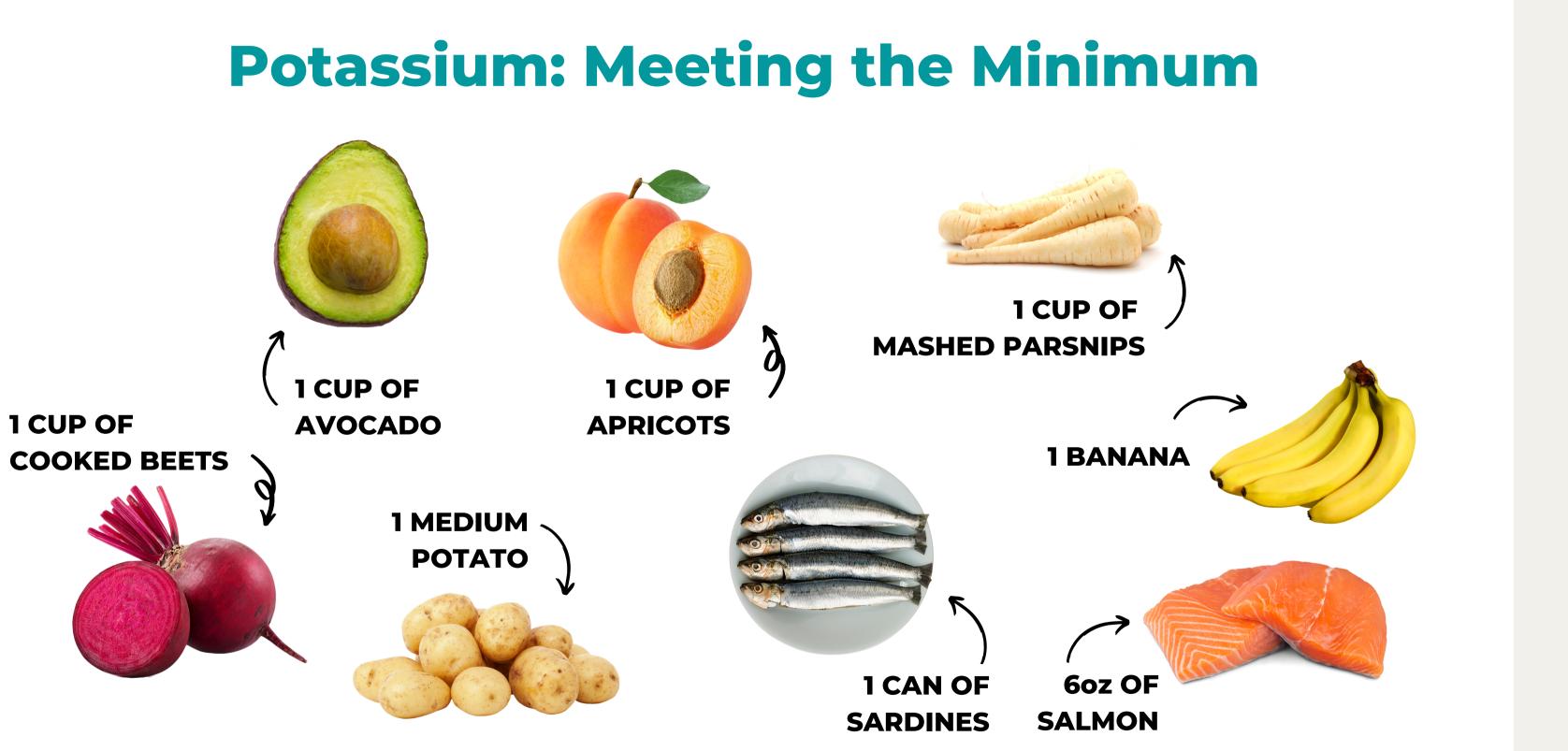
Magnesium: Meeting the Minimum

Sodium: Meeting the Minimum

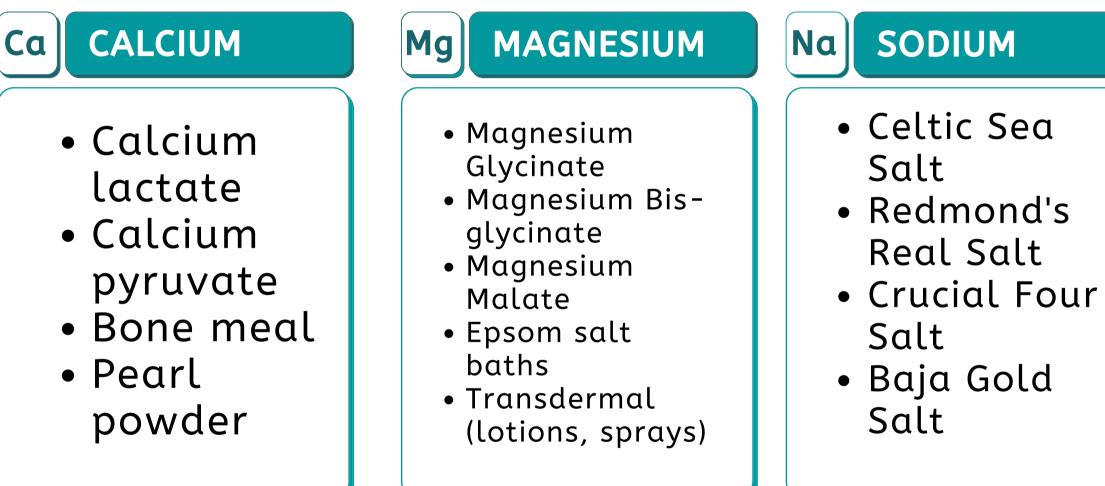
1/4 TSP OF SEA SALT



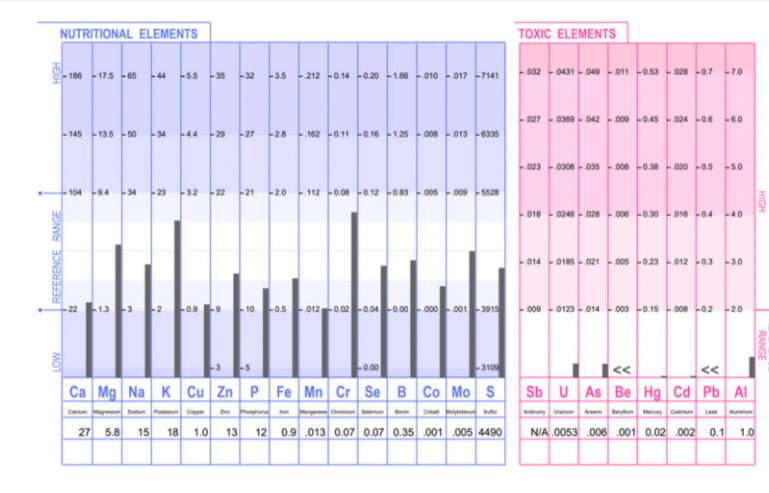

1/4 CUP OF **GREEN OLIVES**


© Nina-Marie Rueda, ND | www.doctorninamarie.com | IG: edoctorninamarie

1/2 CUP OF COTTAGE CHEESE



Supplements:

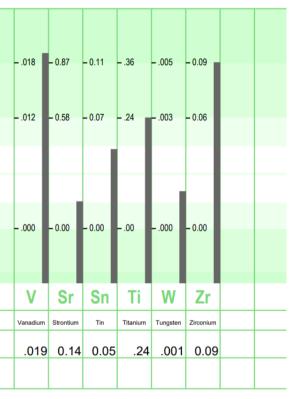


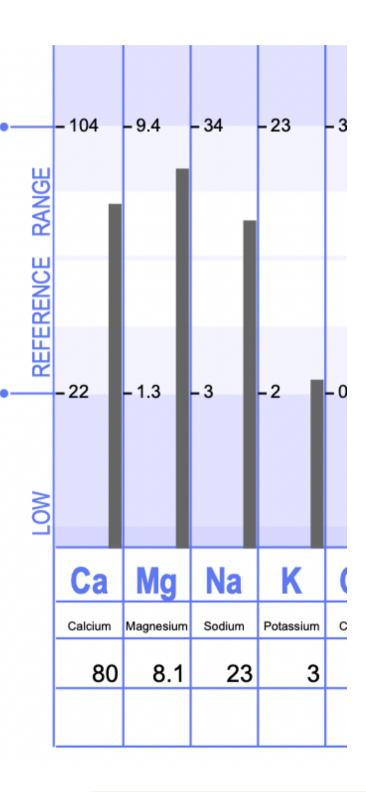
POTASSIUM

Κ

- Potassium Glycinate
- Potassium Gluconate
- Potassium Carbonate
- Potassium Citrate

Mineral balancing supports life.


		ΓΙΟΝΑ	L ELI	EMEN	TS				
HIC	006 004	- 0.41							
REFERENCE RANGE									
FOW	000 Ge	-0.00 Ba	000 << Bi	0017 Rb	000 Li	00 Ni	000 << Pt	0000 << TI	
	Germanium	Barium	Bismuth	Rubidium	Lithium	Nickel	Platinum	Thallium	
	.001	0.04	.001	.0178	.002	.01	.001	.0001	


Any questions?

Where to find me:

O @doctorninamarie

& www.doctorninamarie.com

